
1

Evolving Soft Robots for Control Using a Gene

Regulatory Network

By Nathaniel Brookes

21011025

BSc in Computer Science

26th April 2024

SCHOOL OF COMPUTER SCIENCE AND

MATHEMATICS

Keele University

Keele

Staffordshire

ST5 5BG

2

Abstract

This project investigates the effectiveness of Gene Regulatory Networks (GRN) for

controlling Voxel-based Soft Robots on locomotion and object manipulation tasks.

GRNs are a biologically-inspired model that has been shown to be effective at

controlling rigid robots; however, this model is under-researched when applied to soft

robots.

An abstract recurrent-based GRN model is implemented in Python and applied within

a soft robot simulator. Different experiments are conducted to compare the

performance of evolved GRN-controlled robots against a baseline approach.

The first experiment studies the GRN’s ability to control hand-designed robots. The

GRN’s initial performance was poor; it performed statistically worse than the baseline

in every task. After improving the GRN model, it achieved comparable performance

with the baseline approach and outperformed the baseline in one locomotion task.

The GRN model was adapted by implementing a developmental model and a

decentralised controller, allowing the GRN to control the robot’s shape and behaviour.

The results show that the co-evolved GRN designs and controls effective robots for

each task. However, the co-evolved GRN was not able to outperform the baseline

approach.

Overall, the results demonstrate that this GRN model can effectively design and

control autonomous soft robots for locomotion and object manipulation tasks.

3

Acknowledgements

I want to thank my supervisor, Dr Alastair Channon, for his guidance and Ash Leake

for setting up a lab PC for running experiments.

4

Table of Contents
Table of Figures ... 5

Table of Appendix Figures ... 7

Specialist Glossary ... 7

Introduction .. 8

Chapter 1: Literature Review... 11

1.1 Gene Regulatory Networks .. 11

1.2 Voxel-based Soft Robots .. 15

1.3 Key Takeaways .. 17

1.4 Under-Researched Areas .. 18

Chapter 2: Replication of Previous Work .. 19

2.1 Replicating A Suitable GRN Model ... 19

2.2 Replicating A Suitable Control Task .. 26

Chapter 3: Application of the GRN Model.. 32

3.1 Methodology .. 32

3.2 Implementation .. 36

3.3 Experiments ... 40

Chapter 4: Refinement of the GRN Model .. 48

4.1 Refinement Iteration One ... 48

4.2 Refinement Iteration Two .. 57

Evaluation and Reflections .. 68

Conclusions .. 71

References .. 75

Appendices ... 77

A. Project Plan ... 77

B. Project GDPR and Ethics Checklist ... 85

C. Project Poster .. 88

D. Unit Test Cases for Software Implementation .. 89

E. Fitness Graphs .. 98

F. Behaviour and Network Analysis ... 100

G. Box Plots... 104

H. Diversity Analysis... 106

I. Best-performing Co-evolved GRN Robots .. 107

5

Table of Figures

Fig.1. Project Aims and Objectives ... 10

Fig.2. Example of biological interactions and the inferred model (Delgado, Gómez-Vela, 2019) 11

Fig.3. Path showing the evolved robot navigating the obstacles (Asr, Majd, 2013) 12

Fig.4. Diagram of the GRN (Sanchez, Cussat-Blanc, 2014) ... 13

Fig.5. Soft-bodied animats developed and controlled by the GRN (Joachimczak, Suzuki & Arita, 2014) ... 14

Fig.6. A 3D VSR simulated in Voxelyze (Cheney et al., 2014) ... 15

Fig.7. 2D VSRs simulated using 2D-VSR-Sim (Pigozzi, Medvet, 2022) ... 16

Fig.8. 2D VSR generated using EvoGym optimised for carrying (Bhatia et al., 2021) 17

Fig.9. The abstract GRN used by (Moreira, Rennó-Costa, 2021) ... 19

Fig.10. Screenshot showing the develop() and calculate_fitness() functions .. 23

Fig.11. Initial plot of the GRN’s fitness .. 23

Fig.12. The code before (top) and after (bottom) correcting the bug .. 24

Fig.13. Plot of the GRN’s fitness after correcting the bug .. 24

Fig.14. Experiment 1: Graph of GRN’s gene potentials and interaction matrix on the left (Watson et al., 2014)

compared with my replicated graphs on the right .. 25

Fig.15. Experiment 2: Graph of GRN’s gene potentials and interaction matrix on the left (Watson et al., 2014)

compared with my replicated graphs on the right .. 26

Fig.16. Overview of EvoGym (Bhatia et al., 2021) ... 27

Fig.17. Command that was executed to run PPO+GA on the ‘Carrier-v0’ task... 29

Fig.18. Results taken from (Bhatia et al., 2021) are shown (left) compared with my replicated results (right).

The solid line represents the average performance between 3 runs, and the shaded region represents the variance 30

Fig.19. The best-performing robot for each environment. UpStepper-v0 (left), Walker-v0 (centre) and

Carrier-v0 (right). ... 31

Fig.20. speed_bot is shown (left) and carry_bot (right) .. 33

Fig.21. Genome representation ... 34

Fig.22. Pseudocode for the Evolutionary Strategy .. 35

Fig.23. Key components of the solution .. 36

Fig.24. UML Communication Diagram .. 37

Fig.25. UML Class Diagrams .. 37

Fig.26. Example results produced from System Testing ... 39

Fig.27. Task Manager shows 2-3 active Python processes .. 39

Fig.28. Task Manager shows the modified program executing on many processes .. 40

6

Fig.29. Command for running PPO ... 41

Fig.30. Initial performance of GRN .. 42

Fig.31. Performance of PPO ... 43

Fig.32. Initial results for the GRN ... 44

Fig.33. GRN’s performance on ‘Carrier-v0’ ... 45

Fig.34. GRN’s actuator levels for ‘Carrier-v0’ .. 45

Fig.35. Example R output for the Mann-Whitney U Test .. 46

Fig.36. Pseudocode for the refined EA ... 49

Fig.37. Crossover operation (Sims, 1994) ... 50

Fig.38. My implementation of (Sims, 1994)’s crossover operator .. 51

Fig.39. Code for implementing Tournament Selection .. 51

Fig.40. Results from the crossover test ... 52

Fig.41. Refined GRN’s performance ... 53

Fig.42. Refined GRN results ... 54

Fig.43. Refined GRN’s performance on ‘Walker-v0’ .. 55

Fig.44. Refined GRN actuator levels for ‘Walker-v0’ ... 55

Fig.45. The decentralised GRN controller... 59

Fig.46. Results from testing my developmental process ... 60

Fig.47. Co-evolved GRN’s performance ... 62

Fig.48. Co-evolved GRN’s performance (without average) .. 62

Fig.49. PPO+GA results .. 63

Fig.50. Co-evolved GRN results ... 63

Fig.51. Co-evolved GRN’s performance on ‘Walker-v0’ .. 64

Fig.52. Co-evolved GRN actuator levels for ‘Walker-v0’ ... 65

Fig.53. The best 20 robots in both tasks at the end of an experiment. Walker-v0 is shown (left) and Carrier-v0

(right) 66

Fig.54. Iterative Model (Visual Paradigm, 2024) .. 69

Fig.55. Project Aims and Objectives ... 73

7

Table of Appendix Figures

Appendix Fig.1. Initial GRN fitness for each run ... 99

Appendix Fig.2. Refined GRN fitness for each run .. 99

Appendix Fig.3. Co-evolved GRN fitness for each run .. 100

Appendix Fig.4. GRN’s performance on ‘Walker-v0’ .. 100

Appendix Fig.5. GRN actuator levels for ‘Walker-v0’ ... 101

Appendix Fig.6. GRN’s performance on ‘UpStepper-v0’... 101

Appendix Fig.7. GRN actuator levels for ‘UpStepper-v0’ .. 102

Appendix Fig.8. Refined GRN’s performance on ‘UpStepper-v0’ ... 102

Appendix Fig.9. Refined GRN actuator levels for ‘UpStepper-v0’ .. 102

Appendix Fig.10. Refined GRN’s performance on ‘Carrier-v0’ ... 103

Appendix Fig.11. Refined GRN actuator levels for ‘Carrier-v0’ .. 103

Appendix Fig.12. Co-evolved GRN’s performance on ‘Carrier-v0’ ... 104

Appendix Fig.13. Co-evolved GRN actuator levels for ‘Carrier-v0’ .. 104

Appendix Fig.14. Box plots of initial GRN and PPO performance... 105

Appendix Fig.15. Box plots of refined GRN and PPO performance ... 105

Appendix Fig.16. Box plots of co-evolved GRN and PPO+GA performance .. 106

Appendix Fig.17. Average shape similarity between the best 20 robots over generations 106

Appendix Fig.18. The best-performing co-evolved GRN robot in each experiment 107

Specialist Glossary

GRN Gene Regulatory Network

PPO Proximal Policy Optimisation

AI Artificial Intelligence

VSR Voxel-based Soft Robot

ANN Artificial Neural Network

PPO+GA PPO used with a Genetic Algorithm

OOP Object-Oriented Programming

UML Unified Modelling Language

EA Evolutionary Algorithm

8

Introduction

Problem Statement and Motivation

One aim for robotics is to develop machines that can operate independently without

human supervision. This has important applications such as search-and-rescue

missions and traversing the harsh terrain of another planet, tasks which are often too

dangerous or infeasible for humans. (Wong et al., 2018) With this comes the challenge

of finding an effective mechanism to control the robot.

Designing a robust controller by hand is difficult since it must adapt to new

environmental conditions. (Patel et al., 2001). As such, Artificial Intelligence methods

have been applied to optimise agent behaviour, including Artificial Neural Networks

(Liu et al., 2023) and Reinforcement Learning (Singh, Kumar & Singh, 2022).

These approaches have traditionally been applied to rigid robots, such as in Karl

Sims’ seminal paper, where the morphology and controllers of 3D block-based robots

are evolved (Sims, 1994). However, rigid robots are constrained by their fixed

structure, which limits their abilities. (Kriegman et al., 2017) This also does not

reflect biology, where organisms have soft components.

The advantages of soft robots, which can morph and adapt to their environment, have

led researchers to investigate how AI can be applied to control soft robots. Recently,

(Bhatia et al., 2021) used Proximal Policy Optimisation (PPO), a reinforcement

learning algorithm, to optimise the controller of Voxel-based Soft Robots (VSR) to

solve locomotion and object manipulation tasks. VSRs are modular robots with

connected voxels that can individually expand and contract. (Hiller, Lipson, 2012)

9

Gene Regulatory Networks (GRN) are a biologically-inspired model based on the

dynamic interactions within our cells. This model is under-researched and could

provide an alternative method for controlling soft robots compared to conventional

reinforcement learning.

Overview of the Project

This project will investigate the effectiveness of an evolved GRN model for

controlling soft robots. The GRN model will be implemented in Python and applied to

locomotion and object-manipulation tasks. The GRN’s performance will be compared

against PPO through experiments, and different approaches will be considered to

improve the GRN’s performance following initial results.

Research Question

Can GRNs be evolved to effectively control soft robots on locomotion and object

manipulation tasks?

10

Fig.1. Project Aims and Objectives

11

Chapter 1: Literature Review

1.1 Gene Regulatory Networks

Gene Regulatory Networks (GRN) originate from biology, where they are used to

infer the complex interactions that occur within cells, as DNA is transcribed into

mRNA and translated into proteins. Certain proteins regulate transcription by binding

to the DNA, which inhibits or activates particular genes and dynamically affects the

cell’s behaviour. (Delgado, Gómez-Vela, 2019)

Fig.2. Example of biological interactions and the inferred model (Delgado, Gómez-Vela, 2019)

The dynamic nature of GRNs means they could be a good model for controlling soft-

bodied agents. GRNs can have recurrent interactions, as shown in Fig.2, which could

generate cyclical feedback loops for walking.

GRN models also exhibit memory. (Watson et al., 2014) showed that evolving an

abstract GRN is equivalent to associative learning of weights in a Hopfield network,

12

and their experiments show that a GRN can be evolved to store and recall multiple

patterns.

GRN models have successfully controlled artificial agents in various tasks and

environments. (Cussat-Blanc, Harrington & Banzhaf, 2019)

1.1.1 Gene Regulatory Networks for Rigid Agent Control

A biologically-inspired cell-based GRN model was evolved using a genetic algorithm

to control a 2D robot, where the goal for the robot is to traverse the space without

colliding with obstacles. (Asr, Majd, 2013) Their model uses different genes to code

for proteins, which can combine with other proteins. Proteins can regulate genes if

their structure is similar to the gene’s binding site. Their model successfully controls

the robot using four genes.

Fig.3. Path showing the evolved robot navigating the obstacles (Asr, Majd, 2013)

A similar cell-based GRN was evolved using a genetic algorithm to control a 3D

modular snake robot. (Zahadat et al., 2013) Their model uses fractals to define the

13

proteins, and the robot was evaluated on how quickly it could move. This study

suggests that their model can effectively control modular robots.

Another paper evolved a tag-based GRN to control a 2D virtual racecar. (Sanchez,

Cussat-Blanc, 2014) Their GRN consists of abstract proteins composed of ID,

enhancer, and inhibitor tags, and they have three types: input, regulatory, and output.

This model is more abstract than the cell-based models, as some cell processes, such

as protein-to-protein interactions, are not modelled.

This paper found that a GRN can control a simulated car and effectively handle

cooperative and conflicting behaviour within the same network. However, they found

that GRNs generate side effects in larger networks and produce inefficient solutions.

Fig.4. Diagram of the GRN (Sanchez, Cussat-Blanc, 2014)

A similar abstract GRN was used to control 2D robots in simple tasks such as

reaching a light source. (Moreira, Rennó-Costa, 2021) Their model contains sensor,

14

processor and controller genes with recurrence connections. They found that larger

GRNs are necessary for complex tasks; however, too many genes can introduce noise.

1.1.2 Gene Regulatory Networks for Soft Agent Control

While most GRNs have been applied to control rigid agents, they have also been

applied to control soft-bodied agents:

A recurrent neural-network GRN was evolved to control 2D soft-bodied animats for

locomotion. (Joachimczak, Suzuki & Arita, 2014) Interestingly, this GRN was also

used to control the animat’s shape via a developmental process, where each animat is

grown from a single cell, which progressively divides to form a multicellular

organism. This paper utilised the NEAT algorithm to evolve the animats’ GRNs,

producing diverse morphologies that exhibit animal-like gaits.

Fig.5. Soft-bodied animats developed and controlled by the GRN (Joachimczak, Suzuki & Arita,

2014)

15

1.2 Voxel-based Soft Robots

Voxel-based Soft Robots (VSRs) are modular robots consisting of voxels which can

expand and contract. They have sparked interest amongst researchers, as they can

exhibit animal-like behaviours, and their modular design could allow them to be more

easily constructed in the physical world than other soft robots. (Hiller, Lipson, 2012)

1.2.1 Existing Simulators for Voxel-based Soft Robots

Open-source software has been developed to simulate VSRs, and they can provide a

benchmark for comparing different models. The following tools have been used

previously to simulate VSRs:

• Voxelyze (Hiller, Lipson, 2014) – This simulator is written in C++ and uses a

mass-spring model. It can simulate 3D VSRs accurately with heterogeneous

materials of differing stiffnesses and densities in a physically accurate

environment. This software does not implement any control tasks.

Voxelyze was used by (Cheney et al., 2014), where they evolved the robot’s shape

for locomotion using CPPN-NEAT, a generative encoding algorithm. Their robots

consist of different materials with pre-specified frequencies to control actuation.

They found that CPPN-NEAT can generate a diverse range of behaviours.

Fig.6. A 3D VSR simulated in Voxelyze (Cheney et al., 2014)

16

• 2D-VSR-Sim (Medvet et al., 2020b) – This simulator is written in Java and uses a

mass-spring model. It can simulate 2D VSRs and provides an implementation of a

locomotion task. However, this simulator does not implement other tasks, such as

object-manipulation.

This simulator has been used to simulate VSRs on locomotion tasks. For example,

(Pigozzi, Medvet, 2022) evolved an ANN neural controller and conducted

experiments on two fixed robot shapes.

Fig.7. 2D VSRs simulated using 2D-VSR-Sim (Pigozzi, Medvet, 2022)

• EvoGym (Bhatia et al., 2021) – EvoGym was recently developed as a benchmark

for comparing algorithms to co-design the body and brain of 2D VSRs. The

software is written in C++ and uses a mass-spring model with an accessible

Python interface. The robots can have different materials, such as rigid, soft, and

actuator voxels. EvoGym implements more than thirty locomotion and object

manipulation control tasks.

17

EvoGym also implements three benchmark co-design algorithms. In these

algorithms, PPO optimises the controller for robot designs generated by a different

design algorithm.

Fig.8. 2D VSR generated using EvoGym optimised for carrying (Bhatia et al., 2021)

1.3 Key Takeaways

Studies have demonstrated that cell-based GRNs can control robots. However, these

complex models have only been applied to simple rigid tasks such as a dot traversing

a maze. (Asr, Majd, 2013)

In contrast, abstract GRNs, such as recurrent-based GRNs, have been used in more

varying and challenging tasks, such as controlling soft-bodied animats on locomotion

tasks. (Joachimczak, Suzuki & Arita, 2014) Therefore, it seems appropriate for this

project to use an abstract model for controlling soft-bodied agents. While these

abstract models do not implement the entire transcription and translation processes,

they model the fundamental aspects: recurrent gene interactions.

Previous studies have used evolutionary algorithms to optimise the GRN, producing

successful results on various problems. Therefore, this approach will be used in this

project.

Considering different VSR simulators, EvoGym implements a variety of locomotion

and object-manipulation tasks and includes benchmark co-design algorithms which

are not present in other simulators. EvoGym is the most appropriate simulator for this

18

project and will be used to simulate the VSRs for the GRN and conventional PPO

models.

1.4 Under-Researched Areas

Many studies that used GRNs were applied to rigid control tasks, such as controlling a

fixed virtual car (Sanchez, Cussat-Blanc, 2014). However, biology has evolved soft-

bodied animals made from flexible materials.

Most control tasks that are used with GRNs are purpose-built for each study.

However, the lack of standardised tasks makes it difficult for researchers to compare

the performance between different algorithms. A benchmark VSR simulator will be

used to make a fair comparison between algorithms.

The previous studies on evolving soft robots only utilise locomotion-based tasks.

What has not been explored is whether GRNs can be applied to control soft robots on

other tasks, such as object manipulation.

19

Chapter 2: Replication of Previous Work

Before applying the GRN model to the EvoGym control tasks, the model and control

tasks will be independently replicated alongside selected results from relevant papers.

2.1 Replicating A Suitable GRN Model

Having considered different GRN models in Chapter 1, the models that appear most

feasible for evolving VSRs are abstract recurrent-based models. Despite not being as

biologically realistic, they are inspired by the regulatory interactions that occur within

cells. They have been shown to achieve good results on locomotion and obstacle-

avoidance tasks. (Joachimczak, Suzuki & Arita, 2014) (Moreira, Rennó-Costa, 2021)

Generally, these approaches model the GRN as a directed graph of genes, where each

gene activates or inhibits other genes through weighted edges. Each gene possesses an

activity level representing how much of that gene exists. Genes are grouped into three

classes: sensors, which take environmental inputs; controllers, which control the

agent’s actuators; and processors, which regulate gene activity. (Moreira, Rennó-

Costa, 2021)

Fig.9. The abstract GRN used by (Moreira, Rennó-Costa, 2021)

20

One paper showed that recurrent-based GRNs can exhibit associative memory

equivalent to a Hopfield network and can learn and recall multiple patterns. (Watson

et al., 2014) Their model will be replicated and implemented in Python alongside

some of their experiments.

2.1.1 Overview of Methodology

(Watson et al., 2014)’s Model

This paper models the individual’s development using a recurrent GRN. The

individual’s phenotype is described by a set of N phenotypic traits at a given

developmental time step P(t), represented by a vector of real numbers. The

individual’s genotype consists of two parts: a vector of direct effects on traits, G, and

the elements 𝑏𝑖𝑗 of an interaction matrix, B. This can model an abstract GRN, where P

represents a pattern of gene activity levels, and B represents a network of up and

down regulatory interactions.

For every developmental step, the activity level of each gene 𝑝𝑖 within the phenotype

vector is updated according to the following equation:

𝑝𝑖(𝑡 + 1) = 𝑝𝑖(𝑡) + 𝜏1𝜎 (∑ 𝑏𝑖𝑗𝑝𝑗(𝑡)
𝑛

𝑗=0
) − 𝜏2𝑝𝑖(𝑡)

They chose 𝜏1 = 1 for the rate constant, which controls the magnitude of the

interaction terms and 𝜏2 = 0.2 for the decay rate. They applied a non-linear function to

the sum of weighted incoming connections using 𝜎(𝑥) = tanh(𝑥).

21

The individual is developed for a set number of developmental time steps.

Evolutionary Model

Unlike conventional evolutionary algorithms, which evaluate a population of

genotypes over several generations, (Watson et al., 2014) used a Hill-Climbing

selection model. This is a simple optimisation technique which iteratively explores the

local search space to find the optimal solution by making small mutations to the

genome. In this technique, only mutations that result in better fitness from the

previous iteration are accepted.

Experiments

The paper conducted experiments on the GRN to test its ability to learn bit-patterns:

• In Experiment 1, the GRN is tasked with learning a single pattern:

[1,1,-1,-1,-1,1,-1,1].

• In Experiment 2, the GRN is tasked with learning two patterns:

[1,1,-1,-1,-1,1,-1,1] and [1,-1,1,-1,1,-1,-1,-1]. During simulation, the current

target pattern alternates between these arrays every 2000 iterations.

To evaluate the GRN’s fitness, the phenotype is compared to the current target

pattern; this is calculated by computing the dot product between the phenotype and

the target.

Replicating the Model and Experiments in Python

22

Python has been chosen as the programming language to implement the GRN model

since it is a high-level language with many libraries that can help build the solution.

Two libraries will be used:

• NumPy will be used since it can generate random uniform values for mutating

the genome. This library also contains special arrays optimised to work faster

than traditional Python arrays; these will be used to store the genome.

• Matplotlib will also be used for its plotting features to visualise the data from

the experiments and test that the model works correctly.

An iterative development and testing approach has been chosen to replicate the GRN

model so that bugs can be identified and corrected quickly. This will be achieved with

PyCharm IDE, which was chosen due to its built-in debugger with breakpoints. It is

also easy to view the console output alongside the program in this IDE, which will be

helpful for testing.

Unit Tests will be performed to test each method. Following this, a fitness graph will

be generated to check that it increases monotonically, which is the expected result for

Hill-Climbing. After testing, graphs will be plotted and compared against the results

presented by the paper to verify that they match.

2.1.2 Implementation

Different functions were created to implement the GRN, such as one for calculating

fitness and one for developing the genotype. This makes the code clearer and easier to

read:

23

Fig.10. Screenshot showing the develop() and calculate_fitness() functions

After implementing each function, Unit Tests were conducted to verify their

correctness: See Appendix D.1 for Unit Tests

The whole solution was tested by running an experiment and plotting the fitness

graph. This initially produced a strange result where the fitness was unstable:

Fig.11. Initial plot of the GRN’s fitness

24

This result suggests that there is a bug in the code since the fitness should increase

monotonically. To investigate this, PyCharm’s debugger was used to inspect the

program.

During debugging, it was found that the result was stored back in the same array when

the gene potentials were developed by the develop() function. This meant that when

the mutated genotype was developed, the mutation was adopted before evaluating

whether it was beneficial. This error was corrected by adding a separate phenotype

array to store the result:

Fig.12. The code before (top) and after (bottom) correcting the bug

The test was repeated to check that the issue had disappeared. The results show the

intended behaviour for Hill Climbing:

Fig.13. Plot of the GRN’s fitness after correcting the bug

25

2.1.3 Results

After testing the code, Experiments 1 and 2 were replicated from (Watson et al.,

2014), and the results were plotted to check that they match the paper’s results:

Experiment 1: Single Selective Environment

Fig.14. Experiment 1: Graph of GRN’s gene potentials and interaction matrix on the left (Watson et

al., 2014) compared with my replicated graphs on the right

Experiment 2: Varying Selective Environment: Multiple Memories

26

Fig.15. Experiment 2: Graph of GRN’s gene potentials and interaction matrix on the left (Watson et

al., 2014) compared with my replicated graphs on the right

2.1.4 Summary

Watson’s GRN model has been successfully replicated and implemented in Python.

The results show their model can exhibit memory capabilities by learning bit patterns.

2.2 Replicating A Suitable Control Task

An existing simulator will be replicated to provide a fair environment for conducting

experiments. EvoGym was chosen since it has different locomotion and object

manipulation control tasks which are not present in other simulators.

27

2.2.1 Overview of Methodology

EvoGym

EvoGym is a multi-material VSR simulator, where each robot can consist of actuators

(vertical and horizontal) which expand and contract, as well as soft and rigid voxels

which do not produce actuation. EvoGym provides over 30 control tasks, such as

carrying a block and walking up a hill. Each task has a reward function which

evaluates the robot’s performance.

Fig.16. Overview of EvoGym (Bhatia et al., 2021)

Co-optimisation Algorithms

EvoGym provides three approaches for co-optimising the robot’s shape and controller.

PPO is used to optimise the controller in each approach and different design

optimisation algorithms optimise the robot's shape: Bayesian Optimisation, Genetic

Algorithm and CPPN-NEAT.

The paper found that PPO with Genetic Algorithm (PPO+GA) performed better than

the other approaches. To verify the paper’s results, PPO+GA will be replicated across

a selection of control tasks.

28

2.2.2 Running EvoGym Experiments

Installation of EvoGym

EvoGym was installed from the GitHub repository by following the online

instructions. A custom Python virtual environment was created to hold the simulator's

dependencies.

Replicating PPO+GA with EvoGym

EvoGym provides over 30 different control tasks, and a selection of these will be

replicated:

• Locomotion Tasks (Walker-v0, UpStepper-v0)

• Object Manipulation Task (Carrier-v0)

(Bhatia et al., 2021) conducted three tests for each environment using different seeds.

Running the experiment multiple times provides a more accurate way of comparing

algorithms; therefore, three experiments with different seeds will be replicated for

each environment.

EvoGym contains files for running each benchmark algorithm, such as ‘run-ga.py’ for

running the PPO+GA algorithm. Before running this file, the seed for the experiment

was set so that independent samples could be collected.

The following command was executed to run each experiment, and the -env-name

argument was modified to specify the control task. All of the remaining arguments

were set the same as what was used in the paper to ensure a fair comparison:

29

Fig.17. Command that was executed to run PPO+GA on the ‘Carrier-v0’ task

Initially, co-design experiments were replicated on my laptop with a CPU speed of

2.40GHz and 8 processors. With this setup, each generation of one experiment took

~1-2 hours, even when taking advantage of multiprocessing. Since some experiments

needed to be run for 30 generations and replicated over 3 different seeds, it took over

a week for the algorithm to be replicated on a single environment. Due to the high

computational requirements, it was decided to reinstall EvoGym on a remote desktop

so experiments could run overnight.

2.2.3 Results

The replication results have been plotted, indicating that the reward values achieved

roughly match the values presented in the original paper. It is expected that the results

are not exactly the same as the paper’s results since these replication experiments

were conducted using different seeds from what was used in the paper:

30

Fig.18. Results taken from (Bhatia et al., 2021) are shown (left) compared with my replicated results

(right). The solid line represents the average performance between 3 runs, and the shaded region

represents the variance

To verify that the algorithm produces valid robots, EvoGym’s in-built visualiser was

used to view the best-performing robot for each task:

31

Fig.19. The best-performing robot for each environment. UpStepper-v0 (left), Walker-v0 (centre) and

Carrier-v0 (right).

2.2.4 Summary

A selection of locomotion and object manipulation tasks from EvoGym have been

replicated. The results demonstrate that the simulator and control tasks work correctly

and can generate reproducible results.

32

Chapter 3: Application of the GRN Model

In this section, the GRN model will be implemented within EvoGym. This will

involve designing, developing, testing, and integrating new classes to work with

EvoGym so that GRN robots can be evolved and evaluated on EvoGym’s control

tasks.

Experiments will be conducted with the GRN and PPO controllers, and they will be

applied to control different fixed robots for locomotion and object-manipulation tasks.

Results will be compared and analysed to determine whether a GRN can effectively

control a VSR and perform similarly or better than PPO.

3.1 Methodology

Task: Controlling Robots with Fixed Shapes

EvoGym provides two hand-designed robots:

• speed_bot – This robot has been designed for speed. It has 10 horizontal

actuators, 5 rigid voxels and 1 soft voxel.

• carry_bot – This robot has been designed to carry an object. It has 8 horizontal

actuators, 4 vertical actuators, 3 rigid voxels and 4 soft voxels.

33

Fig.20. speed_bot is shown (left) and carry_bot (right)

These robots will be used to compare the performance of the GRN controller against

the PPO controller. Results will be collected and analysed to evaluate the GRN’s

effectiveness.

The speed_bot will be evaluated on two locomotion tasks:

1. Walker-v0: This task evaluates the robot on a flat terrain with no obstacles.

EvoGym classifies this as an easy task.

2. UpStepper-v0: This task evaluates the robot’s ability to climb stairs of

varying lengths. EvoGym classifies this as a medium task.

The carry_bot will be evaluated on one object manipulation task:

3. Carrier-v0: This task evaluates the robot’s ability to catch and carry a box

along a flat terrain. EvoGym classifies this as an easy task.

Genome Representation

To apply the GRN model to these robots, the number of genes within the GRN must

be specified. In EvoGym, the observation space (i.e., the number of sensors provided

34

to the robot) is dependent on the shape of the robot and the control environment. The

action space is equal to the number of actuators within the robot.

To ensure that the GRN has enough genes to map the observation and action spaces,

the total number of genes will be calculated using this equation:

size(observation_space) + size(processor_genes) + size(action_space)

observation_space and action_space can be determined by querying EvoGym’s in-

built methods. The number of processor genes is a model parameter that was set to 32.

The robot’s genome consists of regulatory interactions between genes. This can be

represented using an adjacency matrix of real values between -1 and 1, which will be

flattened into a 1-dimensional array. With this configuration, a linear genome can

represent a fully-connected recurrent network, where each gene has a regulatory effect

on every other gene, including itself.

Fig.21. Genome representation

Evolutionary Algorithm

(Watson et al., 2014) used a Hill-Climbing selection model, which was shown to work

well for learning simple bit-patterns. However, it is unlikely that Hill-Climbing would

35

find a suitable controller since it is ineffective at optimising problems with multiple

local optima. (Prügel-Bennett, 2004)

Evolutionary algorithms can work on soft-bodied control tasks and will be used

instead. This approach was successfully used by (Nadizar et al., 2023) to evolve

different VSR controllers for locomotion tasks.

The following are the steps for the Evolutionary Strategy used by (Nadizar et al.,

2023), which has been adapted to evolve a population of GRNs:

Fig.22. Pseudocode for the Evolutionary Strategy

The parameters for this algorithm are set to: npop = 36 and σ = 0.35.

Furthermore, the GRN’s decay rate was reduced from 0.2 to 0.02 since this lower

value was found to work better for EvoGym.

36

3.2 Implementation

Before writing any code, the problem was decomposed into smaller parts to determine

the key requirements for the program. Decomposition makes it easier to understand

what is needed to implement the solution.

3.2.1 Problem Decomposition

The following key components of the solution were identified:

Fig.23. Key components of the solution

3.2.2 UML Diagrams

A UML Communication Diagram was created to visualise how the classes work

together. The black boxes represent each component that will be implemented:

37

Fig.24. UML Communication Diagram

UML Class Diagrams were created to depict the required attributes and methods for

the main classes:

Fig.25. UML Class Diagrams

38

3.2.3 Programming and Testing

After designing the system, classes were implemented in Python via Object-Oriented

Programming (OOP). Each class was placed into a different file to make it easier to

manage the code.

Python was used since it is the language used by EvoGym, and using the same

language allows the model to be easily integrated with their control tasks. OOP was

chosen since it provides a modular framework, making adding or modifying

functionality for individual classes easier without needing to rewrite the entire

program. (Sushant Gaurav, 2023)

Unit Testing was applied by testing small code segments to verify their correctness,

such as checking the step() method within the WatsonGRN class. See Appendix D.2

for Unit Tests

Integration Testing was then applied to check that modules work together correctly,

such as testing the Robot and WatsonGRN classes simultaneously. Finally, System

Testing was conducted to test the entire solution by observing the fitness values

outputted.

39

Fig.26. Example results produced from System Testing

After implementing the program, the Task Manager was inspected to verify that the

program was applying multiprocessing correctly:

Fig.27. Task Manager shows 2-3 active Python processes

The Task Manager only showed 2-3 active Python processes. This suggests that the

jobs were executed in series, meaning that multiprocessing was not working as

intended.

40

After inspecting the code, an issue was identified that caused the GRN to be

instantiated before jobs were sent to the Multiprocessing Manager. This used a lot of

CPU time and increased the experiment’s runtime.

The program was modified to eliminate this issue. The code responsible for

instantiating the robot’s controller in the Robot class was moved into a new class,

which is only called to instantiate the robot’s GRN during a process job rather than in

the main program. After making this change, the test was repeated, and the Task

Manager now shows multiprocessing working:

Fig.28. Task Manager shows the modified program executing on many processes

3.3 Experiments

To explore the behaviour and effectiveness of the implemented GRN controller,

experiments were conducted on three control tasks: Walker-v0, UpStepper-v0 and

Carrier-v0. These experiments were also conducted with a PPO controller, which

allows the GRN to be compared against a conventional approach.

41

Each control strategy (PPO and evolved GRN) was replicated 10 times with different

seeds to get a range of independent samples. In total, 60 experiments were conducted

(30 for each control strategy).

3.3.1 Experiments with the PPO Controller

To set up the PPO experiments, the run_group_ppo.py file was edited to specify the

parameters, including the seed, environment, and robot type. After this, the following

command was executed with the default PPO parameters as used by (Bhatia et al.,

2021):

Fig.29. Command for running PPO

3.3.2 Experiments with the GRN Controller

To set up the GRN experiments, the run script was modified to specify the experiment

parameters (e.g. seed, environment, robot type and population size). After this, the

program was executed to evolve a population of GRN robots.

42

3.3.3 Preliminary Results for GRN

Fig.30. Initial performance of GRN

The GRN’s initial best and average performance from a single experiment was

plotted. These graphs show that the GRN’s best fitness plateaus in every task, and the

average fitness does not increase much throughout the experiment.

3.3.4 All Results

Performance of the PPO Controller

43

Fig.31. Performance of PPO

These results indicate that PPO can effectively optimise the ‘speed_bot’ for the

Walker-v0 task, achieving a median fitness of 10.57. PPO has also shown good

performance when applied to the ‘carry_bot’ for the Carrier-v0 task, achieving a

median fitness of 6.03. However, it performed poorly when optimising the

‘speed_bot’ for the UpStepper-v0 task and only achieved a median fitness of 1.44.

Compared with the replication results conducted in Chapter 2, PPO generally does

not perform as well at controlling fixed shapes compared to when coupled with a

design optimisation algorithm. The only exception is the Walker-v0 task, where PPO

achieved the maximum fitness possible by reaching the end of the environment.

Initial Performance of the GRN Controller

44

Fig.32. Initial results for the GRN

These results show that the GRN achieved much lower fitness scores than PPO in

every task. See Appendix E.1 for full performance graphs

3.3.5 Analysis

To investigate the GRN further, the robot’s behaviour during simulation was analysed.

Following this, a statistical test was conducted to show whether there is a statistically

significant difference between the PPO and GRN results.

Behaviour and Network Analysis

A video of the best-performing robot’s behaviour was inspected. This was taken from

the Carrier-v0 experiment:

45

Fig.33. GRN’s performance on ‘Carrier-v0’

The video reveals that the GRN robot can move the block without dropping it;

however, it moves quite chaotically and slowly.

A graph was created to plot the robot’s expression levels for each actuator (each

colour represents one actuator). This shows that the actuator expression levels tend to

fluctuate unpredictably:

Fig.34. GRN’s actuator levels for ‘Carrier-v0’

The best-performing robot for the UpStepper-v0 and Walker-v0 tasks shows similar

behaviour and noisy actuator levels.

See Appendix F.1 for further behaviour and network analysis

46

Statistical Analysis

To make a concrete comparison between the GRN and PPO controllers, a statistical

test was performed for each control task. The Mann-Whitney U Test is a non-

parametric statistical test which tests for differences between two independent groups

(McKnight, Najab, 2010). This test can determine whether there is a statistically

significant difference between the results of each control strategy.

For this test, the Null Hypothesis = There is no difference in the median fitness

between the GRN and PPO. This test was conducted in R using the built-in

wilcox.test() method:

Fig.35. Example R output for the Mann-Whitney U Test

This test produced p-values of 0.00001083 for the Walker-v0 and Carrier-v0 tasks and

a p-value of 0.0004871 for the UpStepper-v0 task.

These p-values are less than the standard 0.05 significance threshold; therefore, the

Null Hypothesis can be rejected in favour of the Alternative Hypothesis which is that

there is a statistically significant difference between the performance of PPO and

GRN. Since the GRN’s median performance is less than the PPO, this test shows

statistically that the GRN performed worse than PPO.

See Appendix G.1 for box plot comparison charts

47

3.3.6 Conclusions

While the GRN has shown some effectiveness at controlling a VSR on locomotion

and object-manipulation tasks, the results and analysis demonstrate that the GRN

performs worse than PPO.

One reason could be that the evolutionary algorithm fell into a local optimum and

could not find a better solution. The next chapter will consider different approaches to

improve the GRN’s performance.

48

Chapter 4: Refinement of the GRN Model

This section explores different methods to improve the GRN’s performance. This was

achieved through an iterative approach to update and test the program, perform

experiments, collect results, perform analysis, and summarise the findings.

4.1 Refinement Iteration One

The results from Chapter 3 show that the GRN model can control a fixed-shape VSR,

but it performs significantly worse than PPO. The GRN’s fitness plateaus, which

suggests that the Evolutionary Algorithm (EA) may have fallen into a local optima.

There are several reasons which may have caused this algorithm to perform poorly:

• Firstly, this algorithm initialises the entire genome with random values. This

configuration means that the GRN is fully-connected, where every gene regulates

every other gene. This probably caused the network to be overly saturated with

noise, which prevented the robot from exhibiting effective actuation.

• Secondly, a high mutation value is applied with a small population size of 36. It is

likely that this population size is too small to allow for solutions which can

represent the different parts of the fitness landscape. (Aston et al., 2017)

A different EA will be considered to refine the GRN model.

49

4.1.1 Alternative Approach

To address the problem of the GRN being overly saturated, the new approach will

only initialise 10% of the connections to be randomly connected. The mutation value

σ will also be reduced for the same reason, and the population size will be increased

to allow for more solutions.

The selection process will also be modified to increase population diversity via

Tournament Selection. Tournament Selection works by choosing individuals from the

population and selecting the best individual. (Razali, Geraghty, 2011)

Finally, a crossover operator will be implemented based on (Sims, 1994), who applied

crossover to evolve rigid creatures. Introducing crossover should improve the

convergence of the EA since individuals will inherit beneficial traits from their

parents. (Hassanat, Alkafaween, 2017)

The following are the steps for the new EA:

Fig.36. Pseudocode for the refined EA

50

For this algorithm, npop = 100, σ = 0.1 and Tournament Selection is applied with

tournament size = 2 for Step 5.

4.1.2 Implementation

Implementing Crossover

(Sims, 1994) proposed a crossover operator which combines two directed graphs. For

this operator, the nodes of both parents are aligned, and the parents’ nodes and

connections are copied to the child graph. Crossover points determine the point where

the child switches from inheriting nodes from the first parent to the second:

Fig.37. Crossover operation (Sims, 1994)

Their operator has been implemented by performing single-point crossover. This code

was developed as a static method in the existing GRN class:

51

Fig.38. My implementation of (Sims, 1994)’s crossover operator

Modifying the Evolutionary Algorithm

The EA class was modified to implement the new approach. Tournament selection

was implemented using Python’s random library to choose two randomly sampled

individuals from the parents. Then the parent with the highest finesses is selected:

Fig.39. Code for implementing Tournament Selection

52

4.1.3 Testing

To verify that my crossover implementation works, two GRNs were generated with

dummy data, and crossover was applied to them multiple times. Matplotlib was used

to visualise the results of each child GRN:

Fig.40. Results from the crossover test

This shows that the implemented crossover operator correctly combines elements

from both parents and selects a random crossover point.

Further Unit Tests were applied to test the newly-implemented methods: See

Appendix D.3

4.1.4 Experiments

Experiments were conducted on the refined GRN model to evaluate its effectiveness,

and the same tasks and robots were used as in Section 3.3.

53

4.1.5 Preliminary Results

The results of this approach have shown quite a dramatic improvement compared with

the previous GRN:

Fig.41. Refined GRN’s performance

Unlike the previous iteration, where the fitness scores plateau after a few generations,

the refined GRN’s fitness does not plateau initially. However, the fitness did plateau

in the ‘Carrier-v0’ experiment before continuing to increase again.

The ‘Carrier-v0’ and ‘UpStepper-v0’ experiments were run for 200 generations since

the fitness score continued to increase. The reason for stopping the experiment at this

time was due to the computational demands; one experiment took ~8 hrs to evaluate

on task for 200 generations.

54

The ‘Walker-v0’ experiment was terminated after showing no further improvements

after half of the simulation’s runtime.

4.1.6 All Results

Ten experiment samples of the refined GRN were conducted, and each experiment

was run for a maximum of 200 generations or less if the fitness score did not improve

in the last 50% of the runtime.

Fig.42. Refined GRN results

These results show that the GRN achieved a median performance comparable to that

of the PPO on the Walker-v0 task. For the UpStepper-v0 task, the GRN achieved a

greater median and best fitness performance than the PPO. For the Carrier-v0 task, the

GRN achieved a lower best fitness performance than the PPO but obtained a higher

median fitness. See Appendix E.2 for full performance graphs

4.1.7 Analysis

Behaviour and Network Analysis

55

A video of the best-performing robot for each task was inspected. This was taken

from the Walker-v0 experiment:

Fig.43. Refined GRN’s performance on ‘Walker-v0’

The video reveals that the robot runs quickly and successfully reaches the end of the

environment. The actuators contract and expand repeatedly, which results in an

effective running behaviour.

The actuator expression levels for this robot have been plotted, and this shows that

certain actuators quickly fall into a regular cyclical pattern:

Fig.44. Refined GRN actuator levels for ‘Walker-v0’

The best-performing robot for the UpStepper-v0 and Carrier-v0 tasks also shows

effective actions.

56

See Appendix F.2 for further behaviour and network analysis

Statistical Analysis

A Mann-Whitney U test was performed to compare the refined GRN and PPO

performance. This test produced p-values of 0.5787 for the Walker-v0 task, 0.6842 for

the Carrier-v0 task, and 0.003886 for the UpStepper-v0 task.

The p-values for Walker-v0 and Carrier-v0 are greater than the standard 0.05

threshold; therefore, there is no statistically significant difference between the

performance of the refined GRN and PPO for these tasks.

However, the p-value for UpStepper-v0 is less than 0.05; therefore, there is a

statistically significant difference between the groups for this task. Since the GRN’s

median performance for this task is greater than that of PPO, this test shows

statistically that the GRN performed better than PPO for the UpStepper-v0 task.

See Appendix G.2 for box plot comparison charts

4.1.8 Conclusions

The changes that were made to refine the GRN controller have resulted in robots

which show effective control in locomotion and object-manipulation tasks. The robots

performed better in every task than the previous iteration, and the statistical test

showed that the GRN performed better than the PPO for the UpStepper-v0 task.

However, when evaluated on the UpStepper-v0 and Carrier-v0 tasks, the GRN

achieved a lower fitness when compared to the PPO+GA co-design approach. This is

also the case for the PPO controller (see Chapter 3). This suggests that the robot

57

designs may have prevented the GRN from achieving a higher fitness by constraining

its behaviour to a fixed morphology.

A different approach will be considered in the next iteration to co-evolve the robot’s

controller and shape using a GRN.

4.2 Refinement Iteration Two

While the previous GRN effectively controlled the robot’s movements, it performed

worse than the PPO+GA co-design approach. This suggests that the fixed hand-

designed robots are not perfectly suited for EvoGym’s tasks.

One solution could be co-optimising the robot’s controller and design using a GRN;

this approach may be able to find better robot shapes.

4.2.1 Alternative Approach

In biology, GRNs not only control cellular behaviour but they also determine how

cells develop to form complex multicellular animals. (Peter, Davidson, 2011). This

idea has been extended to virtual animats by (Joachimczak, Suzuki & Arita, 2014),

who showed that multicellular soft-bodied animats can be developed from a single

cell using a GRN and controlled on locomotion tasks.

In this section, a GRN developmental process based on this previous work will be

created and adapted for EvoGym. My strategy extends their work by evaluating

robots on locomotion and object manipulation tasks and utilising EvoGym’s

58

simulator. My strategy will also implement a decentralised controller adapted from

(Medvet et al., 2020a) to allow voxels to communicate.

GRN Developmental Approach

Each robot starts as a single voxel in the centre of a 5x5 grid. This voxel contains a

GRN made of 4 input and output genes and 32 processor genes.

During the developmental process, some processor genes have special functions:

• One gene instructs the voxel to divide when its activity exceeds a pre-specified

threshold.

• Two other genes indicate the direction in which the divided cell should be placed

relative to the voxel (left, right, up, or down).

• Four genes determine the voxel’s fate, each representing the propensity for the

voxel to become each of the four possible material states. When the voxel

matures, its fate is determined by the gene with the highest activity.

The remaining processor genes serve to regulate the activity of other genes.

When a voxel divides, its GRN controller is copied into the newly-created voxel.

Additionally, voxels can communicate with their neighbours through signalling input

and output genes positioned on each side of the voxel.

59

Fig.45. The decentralised GRN controller

This developmental process is simulated for 100 steps. Once the robot has fully

developed, it is placed in EvoGym’s environment, and every GRN in each of the

robot’s voxels are stepped. During simulation, voxels retain their signalling genes to

allow for intercellular communication, and actuators have a single gene to control

actuation.

4.2.2 Implementation

The current program will be amended to implement the required features for this new

model.

In this approach, multiple voxels operate independently within the robot both during

and after the developmental process. To model this, a new class: RobotVoxel will be

developed, which allows one Robot to have many instances of RobotVoxel.

60

This class will have attributes such as its GRN controller and a location, which will be

represented as a (row, column) tuple to store the voxel’s location within the robot.

This will allow voxels to send signals to their neighbours.

Additionally, a new attribute will be added to the Robot class for storing RobotVoxel

instances so that the robot’s voxels can be simulated. This class will also initialise one

RobotVoxel at the centre of the grid to start the developmental process.

When generating the robot’s shape, some robots may have developed no actuators,

meaning they are unviable for EvoGym. To address this, these robots will receive an

immediate penalty fitness of -100.

4.2.3 Testing

Before conducting experiments, Unit Tests were applied to test the newly-

implemented methods: See Appendix D.4

The program was then tested to verify that it works as intended by developing

different robot designs. This was achieved by creating many random robots and

visualising what is produced:

Fig.46. Results from testing my developmental process

61

The results show that the program successfully creates various robot designs from

random genomes.

4.2.4 Experiments

Previously, the GRN was compared against PPO; however, since both the robot’s

controller and design will be evolved, it will be compared against the PPO+GA co-

design algorithm, which was replicated in Chapter 2. This approach ensures that the

co-design GRN can be fairly compared against a baseline co-design approach.

The evolutionary algorithm used previously was applied; however, the population size

was increased to 200. This is because optimising the controller and design together is

a more challenging problem than optimising the controller alone, so the higher

population size will allow more solutions to be represented.

Experiments were conducted on the ‘Walker-v0’ and ‘Carrier-v0’ tasks.

4.2.5 Preliminary Results

The preliminary results show that the co-evolved GRN’s best fitness increases in both

tasks. The average fitness initially increases sharply as the unviable robots which

produce no actuators are removed; following this, the average fitness appears to

stagnate:

62

Fig.47. Co-evolved GRN’s performance

The average fitness appears to skew the results for the best fitness; therefore, the

graphs were re-plotted without the average fitness. This shows that the best fitness

increases:

Fig.48. Co-evolved GRN’s performance (without average)

4.2.6 All Results

Performance of the conventional PPO+GA approach

Three samples of the conventional PPO+GA approach were collected by replicating

EvoGym’s results (see Section 2.2.3).

63

Fig.49. PPO+GA results

These results show that for both tasks, the PPO+GA co-optimisation approach

performs better than when PPO is applied to control fixed robots.

Performance of the co-evolved GRN

Ten samples of the co-evolved GRN were conducted, and each experiment was run

for a maximum of 200 generations or less if the fitness score did not improve in the

last 50% of the runtime.

Fig.50. Co-evolved GRN results

64

These results show that the co-evolved GRN achieved a best fitness of 10.59 for the

Walker-v0 task, which is comparable to PPO+GA; however, the GRN achieved a

lower median score. For the Carrier-v0 task, the GRN achieved a lower performance

than PPO+GA. See Appendix E.3 for full performance graphs

4.2.7 Analysis

Behaviour and Network Analysis

A video of the best-performing robot for each task was inspected. This was taken

from the Walker-v0 experiment:

Fig.51. Co-evolved GRN’s performance on ‘Walker-v0’

Despite only having 6 voxels, the robot performs well: it repeatedly expands and

contracts its central actuators, which allows it to move quickly and complete the task.

This cyclical behaviour is also observed in its actuator levels:

65

Fig.52. Co-evolved GRN actuator levels for ‘Walker-v0’

The best-performing robot for the Carrier-v0 task also shows effective behaviour and

actuator cycles: See Appendix F.3

Statistical Analysis

A Mann-Whitney U test was performed to compare the performance between the co-

evolved GRN and PPO+GA. This test produced p-values of 0.006993 for the Walker-

v0 and Carrier-v0 tasks.

These p-values are less than the standard 0.05 significance threshold, meaning the

Null Hypothesis can be rejected. Therefore, there is a statistically significant

difference between the performance of the co-evolved GRN and PPO+GA.

Since the co-evolved GRN’s median performance is less than the PPO+GA, this test

shows statistically that the co-evolved GRN performed worse than PPO+GA.

See Appendix G.3 for box plot comparison charts

66

Diversity Analysis

While the co-evolved GRN robots were able to produce effective behaviour, it was

observed that the diversity of robot shapes decreased towards the end of each

experiment. To illustrate this, the best 20 individuals at the end of an experiment were

visualised:

Fig.53. The best 20 robots in both tasks at the end of an experiment. Walker-v0 is shown (left) and

Carrier-v0 (right)

This visualisation shows that for both tasks, there is a lack of diversity at the end of

the experiment, as most of the best robots have the same shape.

Quantitative diversity analysis was also conducted, which shows a similar drop in

diversity: See Appendix H

67

4.2.8 Conclusions

The results indicate that a GRN can co-evolve the shape and controller of soft-bodied

VSRs, and my developmental approach can produce a variety of robot designs. See

Appendix I for the best co-evolved robots

However, the new approach did not perform as well as the conventional PPO+GA and

achieved lower median scores in each task. The analysis indicates that the diversity of

different robot designs decreases over time. The algorithm appears to focus on finding

a good robot design before optimising the controller for that design. This suggests that

the algorithm selects sub-optimal robot designs, which causes it to converge

prematurely.

68

Evaluation and Reflections

Research and Experiment Approach

Overall, I believe that this project has addressed the original research question:

• Can GRNs be evolved to effectively control soft robots on locomotion and object

manipulation tasks?

This project has explored and answered this question by conducting experiments

across three control tasks (two locomotion tasks and one object-manipulation task).

I ensured that my experimentation technique was robust by conducting multiple

samples and setting up a fair comparison by evaluating both controllers on the same

control task using EvoGym.

Additionally, I applied best practices for conducting research experiments by using

different random seeds to ensure that each sample was independent, and I documented

my approach, including the experiment parameters, so that the experiments could be

replicated. I also performed statistical analysis using the Mann-Whitney U Test to test

the statistical significance of the results at each iteration.

In Chapter 4, I considered different strategies to improve the GRN’s performance,

including implementing an alternative evolutionary algorithm and a GRN

developmental model to co-design the robot’s controller and shape.

Software Implementation and Testing Approach

69

For implementing software, I followed an iterative development methodology, which

involved modifying the code to implement new features, testing the code and

evaluating the model using EvoGym during experiments. This approach was chosen

rather than a waterfall model since the approach to improve the GRN could not be

known until after experiments were conducted on the prior iteration.

Fig.54. Iterative Model (Visual Paradigm, 2024)

I also applied different testing methods, such as Unit Testing and System Testing, to

ensure that my implemented code was error-free and produced the expected results.

Using these methods allowed me to identify errors early in the development lifecycle.

To support these methods, I used GitHub to push commits from PyCharm to back up

my work during each iteration.

Reflections

Overall, I am pleased with how I conducted the project and my achievements. I

followed my project plan; however, I did have to modify the plan to adapt to the

circumstances.

70

For example, I initially intended to compare the GRN against an ANN approach

(Tanaka, Aranha, 2022), but unfortunately, I could not get their code to run, so I chose

to replicate PPO instead.

Overall, the biggest challenge for this project was managing time, as many

experiments took multiple days to complete, and I needed a sufficient number of

samples for each task to perform statistical analysis. I accommodated this by

reinstalling EvoGym on a remote PC to allow experiments to run overnight whilst

also running experiments overnight on my laptop.

There are a couple of things that I would have done differently in this project:

• I would have decided on a control task and begun the replication experiments

sooner in the project. I did not anticipate that each experiment would take several

days, which meant it was challenging to collect enough samples to conduct a fair

statistical comparison for the second iteration.

• I would have requested a laboratory PC earlier in the project to have more time

and resources to conduct more experiments.

71

Conclusions

This project replicated and applied a Gene Regulatory Network to evolve complex,

soft-bodied robots for locomotion and object-manipulation tasks. An iterative

methodology was followed both for researching different approaches and

implementing these to refine the model.

The findings show that a GRN model can be evolved to effectively control VSRs

when using an evolutionary algorithm that employs crossover and Tournament

Selection. This approach was extended to implement a GRN developmental model

which co-evolves the robot’s shape and controller. These results could be improved by

preserving the diversity of robot shapes.

Overall, the project’s aims and objectives have been achieved:

• For Objective 1, this project replicated the work of (Bhatia et al., 2021) using a

conventional PPO model in Section 2.2.

• For Objective 2, this project implemented (Watson et al., 2014)’s GRN model and

an evolutionary algorithm in Chapter 3 using Python.

• For Objective 3, this project conducted experiments to compare the GRN with the

existing PPO model for controlling fixed robot designs in Sections 3.3 and 4.1.4

and for co-designing robots in Section 4.2.4

72

• For Objective 4, non-parametric statistical tests were conducted following

experiments to measure the statistical significance of results. While I was able to

collect a sufficient number of samples for most experiments, in the second

refinement stage, I was only able to collect 3 samples for the PPO+GA approach,

as experiments took multiple days.

• For Objective 5, different approaches were successfully implemented to improve

the GRN’s performance, including an alternative evolutionary algorithm and a

method for co-evolving the robots’ brain and body.

• For Objective 6, the GRN model was applied to more complex tasks, such as the

UpStepper-v0; however, due to time constraints, I was not able to apply this task

in the second refitment iteration. I would have liked to utilise more of EvoGym’s

tasks; however, I did not have sufficient computational resources or time to

achieve this.

73

Fig.55. Project Aims and Objectives

There are many interesting ways to expand on this project’s work:

• In Section 4.2, the robot’s shape and controller were co-evolved using a

decentralised GRN. Future projects could adapt this to explore how GRNs can

evolve their sensory inputs so that robots can adapt sensors suited for the task.

• The current EvoGym tasks require robots to learn one behaviour, such as running

for the locomotion tasks. (Watson et al., 2014) showed that recurrent GRNs have

memory capabilities and can learn different patterns. Future work could use

EvoGym to design a task that combines two different environments and explores

74

whether this GRN model can enable robots to switch between different patterns of

behaviour suited to each environment.

• This project utilised an abstract recurrent neural network GRN model to control

and design VSRs. Future work could compare this abstract model with a more

biologically realistic model to evaluate each model’s capabilities.

75

References

Asr, N.R. & Majd, V.J. 2013, "A new artificial genetic regulatory network model and its

application in two dimensional robot control", International Journal of Information and

Electronics Engineering, vol. 3, no. 5, pp. 461.

Aston, E., Channon, A., Belavkin, R.V., Gifford, D.R., Krašovec, R. & Knight, C.G. 2017,

"Critical mutation rate has an exponential dependence on population size for eukaryotic-

length genomes with crossover", Scientific reports, vol. 7, no. 1, pp. 15519.

Bhatia, J., Jackson, H., Tian, Y., Xu, J. & Matusik, W. 2021, "Evolution gym: A large-scale

benchmark for evolving soft robots", Advances in Neural Information Processing

Systems, vol. 34, pp. 2201-2214.

Cheney, N., MacCurdy, R., Clune, J. & Lipson, H. 2014, "Unshackling evolution: evolving soft

robots with multiple materials and a powerful generative encoding", ACM

SIGEVOlution, vol. 7, no. 1, pp. 11-23.

Cussat-Blanc, S., Harrington, K. & Banzhaf, W. 2019, "Artificial Gene Regulatory Networks—A

Review", Artificial Life, vol. 24, no. 4, pp. 296-328.

Delgado, F.M. & Gómez-Vela, F. 2019, "Computational methods for Gene Regulatory Networks

reconstruction and analysis: A review", Artificial Intelligence in Medicine, vol. 95, pp. 133-

145.

Hassanat, A.B. & Alkafaween, E. 2017, "On enhancing genetic algorithms using new

crossovers", International Journal of Computer Applications in Technology, vol. 55, no. 3,

pp. 202-212.

Hiller, J. & Lipson, H. 2014, "Dynamic simulation of soft multimaterial 3d-printed objects", Soft

robotics, vol. 1, no. 1, pp. 88-101.

J. Hiller & H. Lipson 2012, "Automatic Design and Manufacture of Soft Robots", IEEE

Transactions on Robotics, vol. 28, no. 2, pp. 457-466.

Joachimczak, M., Suzuki, R. & Arita, T. 2014, "Fine Grained Artificial Development for Body-

Controller Coevolution of Soft-Bodied Animats", - ALIFE 14: The Fourteenth International

Conference on the Synthesis and Simulation of Living Systems, pp. 239.

Kriegman, S., Cappelle, C., Corucci, F., Bernatskiy, A., Cheney, N. & Bongard, J.C. 2017,

"Simulating the evolution of soft and rigid-body robots", Proceedings of the genetic and

evolutionary computation conference companion, pp. 1117.

Liu, Z., Peng, K., Han, L. & Guan, S. 2023, "Modeling and control of robotic manipulators based

on artificial neural networks: a review", Iranian Journal of Science and Technology,

Transactions of Mechanical Engineering, vol. 47, no. 4, pp. 1307-1347.

McKnight, P.E. & Najab, J. 2010, "Mann‐Whitney U Test", The Corsini encyclopedia of

psychology, , pp. 1.

Medvet, E., Bartoli, A., De Lorenzo, A. & Fidel, G. 2020a, "Evolution of distributed neural

controllers for voxel-based soft robots", Proceedings of the 2020 Genetic and Evolutionary

Computation Conference, pp. 112.

Medvet, E., Bartoli, A., De Lorenzo, A. & Seriani, S. 2020b, "2D-VSR-Sim: A simulation tool for

the optimization of 2-D voxel-based soft robots", SoftwareX, vol. 12, pp. 100573.

Moreira, A.L. & Rennó-Costa, C. 2021, "Evolutionary Strategies Applied to Artificial Gene

Regulatory Networks", bioRxiv, , pp. 2021.09. 28.462218.

76

Mukesh Patel, Vasant Honavar & Karthik Balakrishnan 2001, Advances in the Evolutionary

Synthesis of Intelligent Agents, The MIT Press.

Nadizar, G., Medvet, E., Nichele, S. & Pontes-Filho, S. 2023, "An experimental comparison of

evolved neural network models for controlling simulated modular soft robots", Applied Soft

Computing, vol. 145, pp. 110610.

Peter, I.S. & Davidson, E.H. 2011, "Evolution of gene regulatory networks controlling body plan

development", Cell, vol. 144, no. 6, pp. 970-985.

Pigozzi, F. & Medvet, E. 2022, "Evolving modularity in soft robots through an embodied and self-

organizing neural controller", Artificial Life, vol. 28, no. 3, pp. 322-347.

Prügel-Bennett, A. 2004, "When a genetic algorithm outperforms hill-climbing", Theoretical

Computer Science, vol. 320, no. 1, pp. 135-153.

Razali, N.M. & Geraghty, J. 2011, "Genetic algorithm performance with different selection

strategies in solving TSP", Proceedings of the world congress on engineeringInternational

Association of Engineers Hong Kong, China, , pp. 1.

Sanchez, S. & Cussat-Blanc, S. 2014, "Gene regulated car driving: using a gene regulatory

network to drive a virtual car", Genetic Programming and Evolvable Machines, vol. 15, pp.

477-511.

Sims, K. 1994, "Evolving virtual creatures", Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive TechniquesAssociation for Computing Machinery, New

York, NY, USA.

Singh, B., Kumar, R. & Singh, V.P. 2022, "Reinforcement learning in robotic applications: a

comprehensive survey", Artificial Intelligence Review, vol. 55, no. 2, pp. 945-990.

Sushant Gaurav 2023, , Advantages and Disadvantages of OOP.

Tanaka, F. & Aranha, C. 2022, "Co-evolving morphology and control of soft robots using a single

genome", 2022 IEEE Symposium Series on Computational Intelligence (SSCI)IEEE, , pp.

1235.

Visual Paradigm 2024, What is a Software Process Model?. Available: https://www.visual-

paradigm.com/guide/software-development-process/what-is-a-software-process-model/.

Watson, R.A., Wagner, G.P., Pavlicev, M., Weinreich, D.M. & Mills, R. 2014, "The evolution of

phenotypic correlations and “developmental memory”", Evolution, vol. 68, no. 4, pp. 1124-

1138.

Wong, C., Yang, E., Yan, X. & Gu, D. 2018, "Autonomous robots for harsh environments: a

holistic overview of current solutions and ongoing challenges", Systems Science & Control

Engineering, vol. 6, no. 1, pp. 213-219.

Zahadat, P., Christensen, D.J., Katebi, S. & Stoy, K. 2013, "Sensor-coupled fractal gene

regulatory networks for locomotion control of a modular snake robot", Distributed

Autonomous Robotic Systems: The 10th International SymposiumSpringer, , pp. 517.

https://www.visual-paradigm.com/guide/software-development-process/what-is-a-software-process-model/
https://www.visual-paradigm.com/guide/software-development-process/what-is-a-software-process-model/

77

Appendices

A. Project Plan

78

79

80

81

82

83

84

85

B. Project GDPR and Ethics Checklist

86

87

88

C. Project Poster

89

D. Unit Test Cases for Software Implementation

D.1: Tests for Replicated GRN Model

Unit Test Plan

Test

No.

Function and

Justification
Test Data Expected Result

1.1

calculate_fitness()

To check that the

fitness calculation

is correct.

Scenario 1:

Two arrays will be passed

with the same values.

v1 = [1,1,1]

v2 = [1,1,1]

The result should

compute the dot

product and output:

(1*1) + (1*1) + (1*1)

= 3

Scenario 2:

Two arrays will be passed

with inverse values.

v1 = [1,1,1]

v2 = [-1,-1,-1]

The result should

compute the dot

product and output:

(1*-1) + (1*-1) + (1*-1)

= -3

1.2

develop()

To check that the

program can

correctly develop

the robot’s

genotype into a

phenotype.

Scenario 1:

Dummy values for

gene_potentials and an

empty interaction_matrix

will be generated and passed

into develop() with a

developmental time step of

1.

gene_potentials = [0, 0.5, 1]

interaction_matrix = [0, 0, 0,

0, 0, 0, 0, 0, 0]

The result should

reduce the

gene_potentials by 20%

since this is the

degradation rate and

output:

0*0.8 = 0,

0.5*0.8 = 0.4,

1*0.8 = 0.8

= [0, 0.4, 0.8]

Scenario 2:

The same values for

gene_potentials will be used;

however, the

interaction_matrix will be

changed to add one positive

connection weight from gene

3 → gene 2.

gene_potentials = [0, 0.5, 1]

interaction_matrix = [0, 0, 0,

0, 0, 1, 0, 0, 0]

The result should

increase the value of

gene 2 and clamp the

output between -1 and

1.

For gene 2, this should

calculate:

0.5*0.8 = 0.4

0.4 + tanh(1) = 1.16152

Clamped output

90

= 1

1.3

mutate()

To check that the

program correctly

mutates the

gene_potentials

and

interaction_matrix

arrays.

An empty gene_potentials

and interaction_matrix will

be created.

gene_potentials = [0, 0, 0]

interaction_matrix = [0, 0, 0,

0, 0, 0, 0, 0, 0]

The result should add

random mutations to

one randomly chosen

element within

gene_potentials and

interaction_matrix

Unit Test Results

Test

No.
Results Pass / Fail

1.1

Scenario 1:

Pass

Scenario 2:

Pass

1.2

Scenario 1:

Pass

91

Scenario 2:

Fail

(See below

for details)

1.3

Pass

Failed Unit Tests

Test No. Reason for Failure

1.2

(Scenario 2)

This test failed because the result exceeded the maximum value of

1. It was found that the develop() function did not constrain the

phenotype values.

This was corrected by adding the following code within develop():

The test was repeated and produced the correct output:

92

D.2: Tests for Initial GRN Applied to EvoGym

Unit Test Plan

Test

No.
Function and Justification Test Data

Expected

Result

2.1

WatsonGRN.step()

To check that this method correctly

updates the gene potentials.

An instance of

WatsonGRN with 3

genes will be

created, and the

step() method will

be run.

The result

should reduce

the

gene_potentials

by 2% since

this is the

degradation

rate, and there

are no

regulatory

connections.

2.2

WatsonGRN.set_random_weights()

To check that this method correctly

creates randomised regulatory

weights.

An instance of

WatsonGRN with 3

genes will be

created, and the

set_random_weights

method will be run.

The result

should set each

weight with a

random value

between -1 and

1.

2.3

Robot.set_inputs()

To check that robots can input

sensor information to its GRN.

An instance of

Robot will be

created with an

environment of

‘Walker-v0’, and 8

dummy inputs will

be passed to the

set_inputs method.

inputs = [0, 1, 1, 0,

1, 0, 0, 1]

The result

should show

that the first 8

values of robot

GRN’s gene

potentials have

been replaced

with the

dummy inputs.

2.4

Robot.get_actuator_values()

To check that the robot can provide

its actuator values.

An instance of

Robot will be

created as

previously, and it

will be stepped

once.

Then, the

get_actuator_values

method will be run.

The result

should output

the last 10

values of the

robot GRN’s

gene potentials

since the

action_space is

10.

93

2.5

GeneticAlgorithm.start()

To check that this method can

perform a genetic algorithm on a

population of robots.

A random

population of 10

robots will be

created and

evaluated in

EvoGym.

The result

should show

that the robots

have been

sorted

according to

their fitness.

A new

population

should also be

created where

the best

individual is

retained with

mutated

offspring.

Unit Test Results

Test

No.
Results Pass / Fail

2.1

Pass

2.2

Pass

2.3

Pass

94

2.4

Pass

2.5

Pass

95

D.3: Tests for Refined GRN

Unit Test Plan

Test

No.
Function and Justification Test Data

Expected

Result

3.1

WatsonGRN.set_random_weights()

This method was updated;

therefore, this test will check that

the GRN can correctly create

randomised regulatory weights.

An instance of

WatsonGRN with 3

genes will be created,

and the

set_random_weights()

method will be run.

The result

should set

10% of

weights with a

random value

between -1

and 1.

3.2

WatsonGRN.mutate_weights()

To check that the GRN can

correctly mutate its regulatory

weights.

An instance of

WatsonGRN with 3

genes will be created,

and the

mutate_weights()

method will be run.

The result

should mutate

regulatory

weights by

adding a

random value

to 5% of the

weights and

resetting 1%

of the weights

to 0.

3.3

GeneticAlgorithm.start() -

Tournament Selection

This method was updated to

introduce Tournament Selection;

therefore, this test will check that

the code correctly applies

Tournament Selection to select the

robots.

Ten random robots

will be instantiated

and given random

fitness scores.

The code for

tournament selection

will be run on these

ten to execute a

tournament of size

two.

The result

should show

that 2 robots

were

randomly

chosen from

the population,

and the

individual

with the

highest fitness

should be

selected.

Unit Test Results

Test

No.
Results Pass / Fail

3.1

Pass

96

3.2

Pass

3.3

Pass

D.4: Tests for Co-evolved GRN

Unit Test Plan

Test

No.
Function and Justification Test Data

Expected

Result

4.1

RobotVoxel.determine_fate()

To check that the decentralised

controller matures into the correct

material state based on the values

of its fate genes.

An instance of Robot

will be created, and

its GRN controller

will be specified with

dummy values for its

fate genes.

The result

should show

that the

voxel’s fate

has been

updated based

on the highest

fate gene.

97

4.2

Robot.develop()

This method was added to allow

the robot to develop by creating

instances of RobotVoxel; therefore,

this test will check that the

RobotVoxel functions correctly.

An instance of Robot

will be created, and

the develop() method

will run to simulate

the developmental

process.

The result

should

generate a

robot with

multiple

voxels

connected to

each other

within the 5x5

design space.

Unit Test Results

Test

No.
Results Pass / Fail

4.1

Run 1:

Run 2:

Pass

4.2

Fail

(See below

for details)

Failed Unit Tests

Test No. Reason for Failure

4.2

This test failed due to a runtime error, which was reported in the

get_structure() method of the Robot class.

This result was found to be caused by an error within the

RobotVoxel class when it checks whether a voxel can divide into

an adjacent voxel.

98

The code allows voxels to be created at index 5, and since the

indices start from zero, this caused the robot to divide beyond the

permitted 5x5 design space:

This was corrected by reducing the maximum index by 1:

The test was repeated, which showed no errors and produced the

intended result:

E. Fitness Graphs

E.1: Initial GRN Performance

99

Appendix Fig.1. Initial GRN fitness for each run

E.2: Refined GRN Performance

Appendix Fig.2. Refined GRN fitness for each run

E.3: Co-evolved GRN Performance

100

Appendix Fig.3. Co-evolved GRN fitness for each run

F. Behaviour and Network Analysis

F.1: Behaviour and Network Analysis for the Initial GRN

Walker-v0 Task

Appendix Fig.4. GRN’s performance on ‘Walker-v0’

The video reveals that while the robot moves forward, it makes hardly any progress

since it repeatedly starts and stops.

The plot of the GRN’s actuators reveals that there are no consistent periodic actuation

cycles, as the actuators appear to fluctuate randomly:

101

Appendix Fig.5. GRN actuator levels for ‘Walker-v0’

UpStepper-v0 Task

Appendix Fig.6. GRN’s performance on ‘UpStepper-v0’

The video shows that the robot behaves similarly to the Walker-v0 task, where it

repeatedly starts and stops. The robot was not able to overcome the first step.

The plot of the GRN’s actuators also shows a similar result as previously, where the

actuator levels fluctuate with no periodic cycles:

102

Appendix Fig.7. GRN actuator levels for ‘UpStepper-v0’

F.2: Behaviour and Network Analysis for the Refined GRN

UpStepper-v0 Task

Appendix Fig.8. Refined GRN’s performance on ‘UpStepper-v0’

The video shows that the robot initially presents effective actuation which allows it to

launch itself over the first step; however, it was not able to progress further since it

froze on the second step.

While the plot of the GRN’s actuators for this task appears noisy, the behaviour

analysis initially indicates effective actuation. However, at around 450 steps, the

actuator levels suddenly fall to 1 or -1, which prevents the robot from moving further

and causes the robot to freeze in place:

Appendix Fig.9. Refined GRN actuator levels for ‘UpStepper-v0’

103

Carrier-v0 Task

Appendix Fig.10. Refined GRN’s performance on ‘Carrier-v0’

The video shows the robot successfully carrying the block while moving; the robot

runs fairly quickly without dropping the block. However, it moves slower than in the

Walker-v0 task and does not manage to reach the end of the environment.

The GRN’s actuators for this task quickly fall into a regular cyclical pattern:

Appendix Fig.11. Refined GRN actuator levels for ‘Carrier-v0’

F.3: Behaviour and Network Analysis for the Co-evolved GRN

Carrier-v0 Task

104

Appendix Fig.12. Co-evolved GRN’s performance on ‘Carrier-v0’

The video shows the robot successfully carrying the block along the terrain without

dropping it. The robot uses its soft and rigid voxels (shown in grey and black) to

prevent the block from falling and uses its actuators (shown in blue) to move forward.

As with the previous iteration, the robot moves slower than in the Walker-v0 task.

The GRN’s actuators fall into a quick cyclical pattern, which allows for effective

movements:

Appendix Fig.13. Co-evolved GRN actuator levels for ‘Carrier-v0’

G. Box Plots

G.1: Comparison of initial GRN and PPO performance

105

Appendix Fig.14. Box plots of initial GRN and PPO performance

G.2: Comparison of refined GRN and PPO performance

Appendix Fig.15. Box plots of refined GRN and PPO performance

106

G.3: Comparison of co-evolved GRN and PPO+GA performance

Appendix Fig.16. Box plots of co-evolved GRN and PPO+GA performance

H. Diversity Analysis

The results for the co-evolved GRN indicate that the diversity of different robot

shapes decreases over time.

To measure this quantitatively, the average phenotypic (shape) diversity of the top

20 robots in the population has been plotted. This was achieved by calculating the

difference in shape similarity between each pair of robots for each generation by

counting the proportion of voxels which are the same in both robots.

The results show that the average similarity decreases sharply over generation

time for both tasks and remains relatively low:

Appendix Fig.17. Average shape similarity between the best 20 robots over generations

Walker-v0 Carrier-v0

107

I. Best-performing Co-evolved GRN Robots

Appendix Fig.18. The best-performing co-evolved GRN robot in each experiment

GRN robots optimised for ‘Walker-v0’

GRN robots optimised for ‘Carrier-v0’

