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Abstract 

This project investigates the effectiveness of Gene Regulatory Networks (GRN) for 

controlling Voxel-based Soft Robots on locomotion and object manipulation tasks. 

GRNs are a biologically-inspired model that has been shown to be effective at 

controlling rigid robots; however, this model is under-researched when applied to soft 

robots. 

An abstract recurrent-based GRN model is implemented in Python and applied within 

a soft robot simulator. Different experiments are conducted to compare the 

performance of evolved GRN-controlled robots against a baseline approach. 

The first experiment studies the GRN’s ability to control hand-designed robots. The 

GRN’s initial performance was poor; it performed statistically worse than the baseline 

in every task. After improving the GRN model, it achieved comparable performance 

with the baseline approach and outperformed the baseline in one locomotion task. 

The GRN model was adapted by implementing a developmental model and a 

decentralised controller, allowing the GRN to control the robot’s shape and behaviour. 

The results show that the co-evolved GRN designs and controls effective robots for 

each task. However, the co-evolved GRN was not able to outperform the baseline 

approach. 

Overall, the results demonstrate that this GRN model can effectively design and 

control autonomous soft robots for locomotion and object manipulation tasks. 
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Introduction 

Problem Statement and Motivation 

One aim for robotics is to develop machines that can operate independently without 

human supervision. This has important applications such as search-and-rescue 

missions and traversing the harsh terrain of another planet, tasks which are often too 

dangerous or infeasible for humans. (Wong et al., 2018) With this comes the challenge 

of finding an effective mechanism to control the robot.  

Designing a robust controller by hand is difficult since it must adapt to new 

environmental conditions. (Patel et al., 2001). As such, Artificial Intelligence methods 

have been applied to optimise agent behaviour, including Artificial Neural Networks 

(Liu et al., 2023) and Reinforcement Learning (Singh, Kumar & Singh, 2022). 

These approaches have traditionally been applied to rigid robots, such as in Karl 

Sims’ seminal paper, where the morphology and controllers of 3D block-based robots 

are evolved (Sims, 1994). However, rigid robots are constrained by their fixed 

structure, which limits their abilities. (Kriegman et al., 2017) This also does not 

reflect biology, where organisms have soft components. 

The advantages of soft robots, which can morph and adapt to their environment, have 

led researchers to investigate how AI can be applied to control soft robots. Recently, 

(Bhatia et al., 2021) used Proximal Policy Optimisation (PPO), a reinforcement 

learning algorithm, to optimise the controller of Voxel-based Soft Robots (VSR) to 

solve locomotion and object manipulation tasks. VSRs are modular robots with 

connected voxels that can individually expand and contract. (Hiller, Lipson, 2012) 
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Gene Regulatory Networks (GRN) are a biologically-inspired model based on the 

dynamic interactions within our cells. This model is under-researched and could 

provide an alternative method for controlling soft robots compared to conventional 

reinforcement learning.  

 

Overview of the Project 

This project will investigate the effectiveness of an evolved GRN model for 

controlling soft robots. The GRN model will be implemented in Python and applied to 

locomotion and object-manipulation tasks. The GRN’s performance will be compared 

against PPO through experiments, and different approaches will be considered to 

improve the GRN’s performance following initial results. 

 

Research Question 

Can GRNs be evolved to effectively control soft robots on locomotion and object 

manipulation tasks? 
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Fig.1. Project Aims and Objectives 
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Chapter 1: Literature Review 

1.1 Gene Regulatory Networks 

Gene Regulatory Networks (GRN) originate from biology, where they are used to 

infer the complex interactions that occur within cells, as DNA is transcribed into 

mRNA and translated into proteins. Certain proteins regulate transcription by binding 

to the DNA, which inhibits or activates particular genes and dynamically affects the 

cell’s behaviour. (Delgado, Gómez-Vela, 2019) 

 

Fig.2. Example of biological interactions and the inferred model (Delgado, Gómez-Vela, 2019) 

 

The dynamic nature of GRNs means they could be a good model for controlling soft-

bodied agents. GRNs can have recurrent interactions, as shown in Fig.2, which could 

generate cyclical feedback loops for walking. 

GRN models also exhibit memory. (Watson et al., 2014) showed that evolving an 

abstract GRN is equivalent to associative learning of weights in a Hopfield network, 
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and their experiments show that a GRN can be evolved to store and recall multiple 

patterns.  

GRN models have successfully controlled artificial agents in various tasks and 

environments. (Cussat-Blanc, Harrington & Banzhaf, 2019) 

 

1.1.1 Gene Regulatory Networks for Rigid Agent Control 

A biologically-inspired cell-based GRN model was evolved using a genetic algorithm 

to control a 2D robot, where the goal for the robot is to traverse the space without 

colliding with obstacles. (Asr, Majd, 2013) Their model uses different genes to code 

for proteins, which can combine with other proteins. Proteins can regulate genes if 

their structure is similar to the gene’s binding site. Their model successfully controls 

the robot using four genes. 

 

Fig.3. Path showing the evolved robot navigating the obstacles (Asr, Majd, 2013) 

 

A similar cell-based GRN was evolved using a genetic algorithm to control a 3D 

modular snake robot. (Zahadat et al., 2013) Their model uses fractals to define the 
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proteins, and the robot was evaluated on how quickly it could move. This study 

suggests that their model can effectively control modular robots. 

Another paper evolved a tag-based GRN to control a 2D virtual racecar. (Sanchez, 

Cussat-Blanc, 2014) Their GRN consists of abstract proteins composed of ID, 

enhancer, and inhibitor tags, and they have three types: input, regulatory, and output. 

This model is more abstract than the cell-based models, as some cell processes, such 

as protein-to-protein interactions, are not modelled.  

This paper found that a GRN can control a simulated car and effectively handle 

cooperative and conflicting behaviour within the same network. However, they found 

that GRNs generate side effects in larger networks and produce inefficient solutions. 

 

Fig.4. Diagram of the GRN (Sanchez, Cussat-Blanc, 2014) 

 

A similar abstract GRN was used to control 2D robots in simple tasks such as 

reaching a light source. (Moreira, Rennó-Costa, 2021) Their model contains sensor, 
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processor and controller genes with recurrence connections. They found that larger 

GRNs are necessary for complex tasks; however, too many genes can introduce noise. 

 

1.1.2 Gene Regulatory Networks for Soft Agent Control 

While most GRNs have been applied to control rigid agents, they have also been 

applied to control soft-bodied agents: 

A recurrent neural-network GRN was evolved to control 2D soft-bodied animats for 

locomotion. (Joachimczak, Suzuki & Arita, 2014) Interestingly, this GRN was also 

used to control the animat’s shape via a developmental process, where each animat is 

grown from a single cell, which progressively divides to form a multicellular 

organism. This paper utilised the NEAT algorithm to evolve the animats’ GRNs, 

producing diverse morphologies that exhibit animal-like gaits. 

 

Fig.5. Soft-bodied animats developed and controlled by the GRN (Joachimczak, Suzuki & Arita, 

2014) 
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1.2 Voxel-based Soft Robots 

Voxel-based Soft Robots (VSRs) are modular robots consisting of voxels which can 

expand and contract. They have sparked interest amongst researchers, as they can 

exhibit animal-like behaviours, and their modular design could allow them to be more 

easily constructed in the physical world than other soft robots. (Hiller, Lipson, 2012) 

 

1.2.1 Existing Simulators for Voxel-based Soft Robots 

Open-source software has been developed to simulate VSRs, and they can provide a 

benchmark for comparing different models. The following tools have been used 

previously to simulate VSRs: 

• Voxelyze (Hiller, Lipson, 2014) – This simulator is written in C++ and uses a 

mass-spring model. It can simulate 3D VSRs accurately with heterogeneous 

materials of differing stiffnesses and densities in a physically accurate 

environment. This software does not implement any control tasks. 

 

Voxelyze was used by (Cheney et al., 2014), where they evolved the robot’s shape 

for locomotion using CPPN-NEAT, a generative encoding algorithm. Their robots 

consist of different materials with pre-specified frequencies to control actuation. 

They found that CPPN-NEAT can generate a diverse range of behaviours. 

 

Fig.6. A 3D VSR simulated in Voxelyze (Cheney et al., 2014) 
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• 2D-VSR-Sim (Medvet et al., 2020b) – This simulator is written in Java and uses a 

mass-spring model. It can simulate 2D VSRs and provides an implementation of a 

locomotion task. However, this simulator does not implement other tasks, such as 

object-manipulation. 

 

This simulator has been used to simulate VSRs on locomotion tasks. For example, 

(Pigozzi, Medvet, 2022) evolved an ANN neural controller and conducted 

experiments on two fixed robot shapes. 

 

Fig.7. 2D VSRs simulated using 2D-VSR-Sim (Pigozzi, Medvet, 2022)   

  

• EvoGym (Bhatia et al., 2021) – EvoGym was recently developed as a benchmark 

for comparing algorithms to co-design the body and brain of 2D VSRs. The 

software is written in C++ and uses a mass-spring model with an accessible 

Python interface. The robots can have different materials, such as rigid, soft, and 

actuator voxels. EvoGym implements more than thirty locomotion and object 

manipulation control tasks. 
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EvoGym also implements three benchmark co-design algorithms. In these 

algorithms, PPO optimises the controller for robot designs generated by a different 

design algorithm. 

 

Fig.8. 2D VSR generated using EvoGym optimised for carrying (Bhatia et al., 2021) 

 

1.3 Key Takeaways 

Studies have demonstrated that cell-based GRNs can control robots. However, these 

complex models have only been applied to simple rigid tasks such as a dot traversing 

a maze. (Asr, Majd, 2013) 

In contrast, abstract GRNs, such as recurrent-based GRNs, have been used in more 

varying and challenging tasks, such as controlling soft-bodied animats on locomotion 

tasks. (Joachimczak, Suzuki & Arita, 2014) Therefore, it seems appropriate for this 

project to use an abstract model for controlling soft-bodied agents. While these 

abstract models do not implement the entire transcription and translation processes, 

they model the fundamental aspects: recurrent gene interactions. 

Previous studies have used evolutionary algorithms to optimise the GRN, producing 

successful results on various problems. Therefore, this approach will be used in this 

project. 

Considering different VSR simulators, EvoGym implements a variety of locomotion 

and object-manipulation tasks and includes benchmark co-design algorithms which 

are not present in other simulators. EvoGym is the most appropriate simulator for this 
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project and will be used to simulate the VSRs for the GRN and conventional PPO 

models. 

 

1.4 Under-Researched Areas 

Many studies that used GRNs were applied to rigid control tasks, such as controlling a 

fixed virtual car (Sanchez, Cussat-Blanc, 2014). However, biology has evolved soft-

bodied animals made from flexible materials. 

Most control tasks that are used with GRNs are purpose-built for each study. 

However, the lack of standardised tasks makes it difficult for researchers to compare 

the performance between different algorithms. A benchmark VSR simulator will be 

used to make a fair comparison between algorithms. 

The previous studies on evolving soft robots only utilise locomotion-based tasks. 

What has not been explored is whether GRNs can be applied to control soft robots on 

other tasks, such as object manipulation. 
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Chapter 2: Replication of Previous Work 

Before applying the GRN model to the EvoGym control tasks, the model and control 

tasks will be independently replicated alongside selected results from relevant papers. 

 

2.1 Replicating A Suitable GRN Model 

Having considered different GRN models in Chapter 1, the models that appear most 

feasible for evolving VSRs are abstract recurrent-based models. Despite not being as 

biologically realistic, they are inspired by the regulatory interactions that occur within 

cells. They have been shown to achieve good results on locomotion and obstacle-

avoidance tasks. (Joachimczak, Suzuki & Arita, 2014) (Moreira, Rennó-Costa, 2021) 

Generally, these approaches model the GRN as a directed graph of genes, where each 

gene activates or inhibits other genes through weighted edges. Each gene possesses an 

activity level representing how much of that gene exists. Genes are grouped into three 

classes: sensors, which take environmental inputs; controllers, which control the 

agent’s actuators; and processors, which regulate gene activity. (Moreira, Rennó-

Costa, 2021) 

 

Fig.9. The abstract GRN used by (Moreira, Rennó-Costa, 2021) 
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One paper showed that recurrent-based GRNs can exhibit associative memory 

equivalent to a Hopfield network and can learn and recall multiple patterns. (Watson 

et al., 2014) Their model will be replicated and implemented in Python alongside 

some of their experiments. 

 

2.1.1 Overview of Methodology 

(Watson et al., 2014)’s Model 

This paper models the individual’s development using a recurrent GRN. The 

individual’s phenotype is described by a set of N phenotypic traits at a given 

developmental time step P(t), represented by a vector of real numbers. The 

individual’s genotype consists of two parts: a vector of direct effects on traits, G, and 

the elements 𝑏𝑖𝑗 of an interaction matrix, B. This can model an abstract GRN, where P 

represents a pattern of gene activity levels, and B represents a network of up and 

down regulatory interactions. 

For every developmental step, the activity level of each gene 𝑝𝑖 within the phenotype 

vector is updated according to the following equation: 

 

𝑝𝑖(𝑡 + 1)  =  𝑝𝑖(𝑡) + 𝜏1𝜎 (∑ 𝑏𝑖𝑗𝑝𝑗(𝑡)
𝑛

𝑗=0
) − 𝜏2𝑝𝑖(𝑡) 

 

They chose 𝜏1 = 1 for the rate constant, which controls the magnitude of the 

interaction terms and 𝜏2 = 0.2 for the decay rate. They applied a non-linear function to 

the sum of weighted incoming connections using 𝜎(𝑥) = tanh(𝑥). 
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The individual is developed for a set number of developmental time steps.  

 

Evolutionary Model 

Unlike conventional evolutionary algorithms, which evaluate a population of 

genotypes over several generations, (Watson et al., 2014) used a Hill-Climbing 

selection model. This is a simple optimisation technique which iteratively explores the 

local search space to find the optimal solution by making small mutations to the 

genome. In this technique, only mutations that result in better fitness from the 

previous iteration are accepted.  

 

Experiments 

The paper conducted experiments on the GRN to test its ability to learn bit-patterns: 

• In Experiment 1, the GRN is tasked with learning a single pattern:  

[1,1,-1,-1,-1,1,-1,1]. 

• In Experiment 2, the GRN is tasked with learning two patterns:  

[1,1,-1,-1,-1,1,-1,1] and [1,-1,1,-1,1,-1,-1,-1]. During simulation, the current 

target pattern alternates between these arrays every 2000 iterations. 

To evaluate the GRN’s fitness, the phenotype is compared to the current target 

pattern; this is calculated by computing the dot product between the phenotype and 

the target. 

 

Replicating the Model and Experiments in Python 
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Python has been chosen as the programming language to implement the GRN model 

since it is a high-level language with many libraries that can help build the solution. 

Two libraries will be used: 

• NumPy will be used since it can generate random uniform values for mutating 

the genome. This library also contains special arrays optimised to work faster 

than traditional Python arrays; these will be used to store the genome. 

 

• Matplotlib will also be used for its plotting features to visualise the data from 

the experiments and test that the model works correctly. 

An iterative development and testing approach has been chosen to replicate the GRN 

model so that bugs can be identified and corrected quickly. This will be achieved with 

PyCharm IDE, which was chosen due to its built-in debugger with breakpoints. It is 

also easy to view the console output alongside the program in this IDE, which will be 

helpful for testing. 

Unit Tests will be performed to test each method. Following this, a fitness graph will 

be generated to check that it increases monotonically, which is the expected result for 

Hill-Climbing. After testing, graphs will be plotted and compared against the results 

presented by the paper to verify that they match. 

 

2.1.2 Implementation 

Different functions were created to implement the GRN, such as one for calculating 

fitness and one for developing the genotype. This makes the code clearer and easier to 

read: 
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Fig.10. Screenshot showing the develop() and calculate_fitness() functions 

 

After implementing each function, Unit Tests were conducted to verify their 

correctness: See Appendix D.1 for Unit Tests 

The whole solution was tested by running an experiment and plotting the fitness 

graph. This initially produced a strange result where the fitness was unstable: 

 

Fig.11. Initial plot of the GRN’s fitness 
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This result suggests that there is a bug in the code since the fitness should increase 

monotonically. To investigate this, PyCharm’s debugger was used to inspect the 

program. 

During debugging, it was found that the result was stored back in the same array when 

the gene potentials were developed by the develop() function. This meant that when 

the mutated genotype was developed, the mutation was adopted before evaluating 

whether it was beneficial. This error was corrected by adding a separate phenotype 

array to store the result: 

 

 

Fig.12. The code before (top) and after (bottom) correcting the bug 

 

The test was repeated to check that the issue had disappeared. The results show the 

intended behaviour for Hill Climbing: 

 

Fig.13. Plot of the GRN’s fitness after correcting the bug 
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2.1.3 Results 

After testing the code, Experiments 1 and 2 were replicated from (Watson et al., 

2014), and the results were plotted to check that they match the paper’s results: 

Experiment 1: Single Selective Environment 

 

 

Fig.14. Experiment 1: Graph of GRN’s gene potentials and interaction matrix on the left (Watson et 

al., 2014) compared with my replicated graphs on the right 

 

Experiment 2: Varying Selective Environment: Multiple Memories 
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Fig.15. Experiment 2: Graph of GRN’s gene potentials and interaction matrix on the left (Watson et 

al., 2014) compared with my replicated graphs on the right 

 

2.1.4 Summary 

Watson’s GRN model has been successfully replicated and implemented in Python. 

The results show their model can exhibit memory capabilities by learning bit patterns. 

 

2.2 Replicating A Suitable Control Task 

An existing simulator will be replicated to provide a fair environment for conducting 

experiments. EvoGym was chosen since it has different locomotion and object 

manipulation control tasks which are not present in other simulators. 
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2.2.1 Overview of Methodology 

EvoGym 

EvoGym is a multi-material VSR simulator, where each robot can consist of actuators 

(vertical and horizontal) which expand and contract, as well as soft and rigid voxels 

which do not produce actuation. EvoGym provides over 30 control tasks, such as 

carrying a block and walking up a hill. Each task has a reward function which 

evaluates the robot’s performance. 

 

Fig.16. Overview of EvoGym (Bhatia et al., 2021) 

 

Co-optimisation Algorithms 

EvoGym provides three approaches for co-optimising the robot’s shape and controller. 

PPO is used to optimise the controller in each approach and different design 

optimisation algorithms optimise the robot's shape: Bayesian Optimisation, Genetic 

Algorithm and CPPN-NEAT.  

The paper found that PPO with Genetic Algorithm (PPO+GA) performed better than 

the other approaches. To verify the paper’s results, PPO+GA will be replicated across 

a selection of control tasks. 
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2.2.2 Running EvoGym Experiments 

Installation of EvoGym 

EvoGym was installed from the GitHub repository by following the online 

instructions. A custom Python virtual environment was created to hold the simulator's 

dependencies. 

 

Replicating PPO+GA with EvoGym 

EvoGym provides over 30 different control tasks, and a selection of these will be 

replicated: 

• Locomotion Tasks (Walker-v0, UpStepper-v0) 

• Object Manipulation Task (Carrier-v0) 

(Bhatia et al., 2021) conducted three tests for each environment using different seeds. 

Running the experiment multiple times provides a more accurate way of comparing 

algorithms; therefore, three experiments with different seeds will be replicated for 

each environment. 

EvoGym contains files for running each benchmark algorithm, such as ‘run-ga.py’ for 

running the PPO+GA algorithm. Before running this file, the seed for the experiment 

was set so that independent samples could be collected. 

The following command was executed to run each experiment, and the -env-name 

argument was modified to specify the control task. All of the remaining arguments 

were set the same as what was used in the paper to ensure a fair comparison: 
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Fig.17. Command that was executed to run PPO+GA on the ‘Carrier-v0’ task 

 

Initially, co-design experiments were replicated on my laptop with a CPU speed of 

2.40GHz and 8 processors. With this setup, each generation of one experiment took 

~1-2 hours, even when taking advantage of multiprocessing. Since some experiments 

needed to be run for 30 generations and replicated over 3 different seeds, it took over 

a week for the algorithm to be replicated on a single environment. Due to the high 

computational requirements, it was decided to reinstall EvoGym on a remote desktop 

so experiments could run overnight. 

 

2.2.3 Results 

The replication results have been plotted, indicating that the reward values achieved 

roughly match the values presented in the original paper. It is expected that the results 

are not exactly the same as the paper’s results since these replication experiments 

were conducted using different seeds from what was used in the paper: 
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Fig.18. Results taken from (Bhatia et al., 2021) are shown (left) compared with my replicated results 

(right). The solid line represents the average performance between 3 runs, and the shaded region 

represents the variance 

 

To verify that the algorithm produces valid robots, EvoGym’s in-built visualiser was 

used to view the best-performing robot for each task: 
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Fig.19. The best-performing robot for each environment. UpStepper-v0 (left), Walker-v0 (centre) and 

Carrier-v0 (right). 

 

2.2.4 Summary 

A selection of locomotion and object manipulation tasks from EvoGym have been 

replicated. The results demonstrate that the simulator and control tasks work correctly 

and can generate reproducible results. 
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Chapter 3: Application of the GRN Model 

In this section, the GRN model will be implemented within EvoGym. This will 

involve designing, developing, testing, and integrating new classes to work with 

EvoGym so that GRN robots can be evolved and evaluated on EvoGym’s control 

tasks.  

Experiments will be conducted with the GRN and PPO controllers, and they will be 

applied to control different fixed robots for locomotion and object-manipulation tasks. 

Results will be compared and analysed to determine whether a GRN can effectively 

control a VSR and perform similarly or better than PPO. 

 

3.1 Methodology 

Task: Controlling Robots with Fixed Shapes 

EvoGym provides two hand-designed robots: 

• speed_bot – This robot has been designed for speed. It has 10 horizontal 

actuators, 5 rigid voxels and 1 soft voxel. 

• carry_bot – This robot has been designed to carry an object. It has 8 horizontal 

actuators, 4 vertical actuators, 3 rigid voxels and 4 soft voxels. 
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Fig.20. speed_bot is shown (left) and carry_bot (right) 

 

These robots will be used to compare the performance of the GRN controller against 

the PPO controller. Results will be collected and analysed to evaluate the GRN’s 

effectiveness. 

The speed_bot will be evaluated on two locomotion tasks:  

1. Walker-v0: This task evaluates the robot on a flat terrain with no obstacles. 

EvoGym classifies this as an easy task. 

2. UpStepper-v0: This task evaluates the robot’s ability to climb stairs of 

varying lengths. EvoGym classifies this as a medium task. 

The carry_bot will be evaluated on one object manipulation task:  

3. Carrier-v0: This task evaluates the robot’s ability to catch and carry a box 

along a flat terrain. EvoGym classifies this as an easy task. 

 

Genome Representation 

To apply the GRN model to these robots, the number of genes within the GRN must 

be specified. In EvoGym, the observation space (i.e., the number of sensors provided 



34 

 

to the robot) is dependent on the shape of the robot and the control environment. The 

action space is equal to the number of actuators within the robot.  

To ensure that the GRN has enough genes to map the observation and action spaces, 

the total number of genes will be calculated using this equation:  

size(observation_space) + size(processor_genes) + size(action_space) 

observation_space and action_space can be determined by querying EvoGym’s in-

built methods. The number of processor genes is a model parameter that was set to 32. 

The robot’s genome consists of regulatory interactions between genes. This can be 

represented using an adjacency matrix of real values between -1 and 1, which will be 

flattened into a 1-dimensional array. With this configuration, a linear genome can 

represent a fully-connected recurrent network, where each gene has a regulatory effect 

on every other gene, including itself.  

 

Fig.21. Genome representation 

 

Evolutionary Algorithm 

(Watson et al., 2014) used a Hill-Climbing selection model, which was shown to work 

well for learning simple bit-patterns. However, it is unlikely that Hill-Climbing would 
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find a suitable controller since it is ineffective at optimising problems with multiple 

local optima. (Prügel-Bennett, 2004) 

Evolutionary algorithms can work on soft-bodied control tasks and will be used 

instead. This approach was successfully used by (Nadizar et al., 2023) to evolve 

different VSR controllers for locomotion tasks. 

The following are the steps for the Evolutionary Strategy used by (Nadizar et al., 

2023), which has been adapted to evolve a population of GRNs: 

 

Fig.22. Pseudocode for the Evolutionary Strategy 

 

The parameters for this algorithm are set to: npop = 36 and σ = 0.35.  

Furthermore, the GRN’s decay rate was reduced from 0.2 to 0.02 since this lower 

value was found to work better for EvoGym. 
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3.2 Implementation 

Before writing any code, the problem was decomposed into smaller parts to determine 

the key requirements for the program. Decomposition makes it easier to understand 

what is needed to implement the solution. 

 

3.2.1 Problem Decomposition 

The following key components of the solution were identified: 

 

Fig.23. Key components of the solution 

 

3.2.2 UML Diagrams 

A UML Communication Diagram was created to visualise how the classes work 

together. The black boxes represent each component that will be implemented: 
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Fig.24. UML Communication Diagram 

 

UML Class Diagrams were created to depict the required attributes and methods for 

the main classes: 

 

Fig.25. UML Class Diagrams 
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3.2.3 Programming and Testing 

After designing the system, classes were implemented in Python via Object-Oriented 

Programming (OOP). Each class was placed into a different file to make it easier to 

manage the code. 

Python was used since it is the language used by EvoGym, and using the same 

language allows the model to be easily integrated with their control tasks. OOP was 

chosen since it provides a modular framework, making adding or modifying 

functionality for individual classes easier without needing to rewrite the entire 

program. (Sushant Gaurav, 2023) 

Unit Testing was applied by testing small code segments to verify their correctness, 

such as checking the step() method within the WatsonGRN class. See Appendix D.2 

for Unit Tests 

Integration Testing was then applied to check that modules work together correctly, 

such as testing the Robot and WatsonGRN classes simultaneously. Finally, System 

Testing was conducted to test the entire solution by observing the fitness values 

outputted. 
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Fig.26. Example results produced from System Testing 

 

After implementing the program, the Task Manager was inspected to verify that the 

program was applying multiprocessing correctly: 

 

Fig.27. Task Manager shows 2-3 active Python processes 

 

The Task Manager only showed 2-3 active Python processes. This suggests that the 

jobs were executed in series, meaning that multiprocessing was not working as 

intended. 
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After inspecting the code, an issue was identified that caused the GRN to be 

instantiated before jobs were sent to the Multiprocessing Manager. This used a lot of 

CPU time and increased the experiment’s runtime. 

The program was modified to eliminate this issue. The code responsible for 

instantiating the robot’s controller in the Robot class was moved into a new class, 

which is only called to instantiate the robot’s GRN during a process job rather than in 

the main program. After making this change, the test was repeated, and the Task 

Manager now shows multiprocessing working: 

 

Fig.28. Task Manager shows the modified program executing on many processes 

 

3.3 Experiments 

To explore the behaviour and effectiveness of the implemented GRN controller, 

experiments were conducted on three control tasks: Walker-v0, UpStepper-v0 and 

Carrier-v0. These experiments were also conducted with a PPO controller, which 

allows the GRN to be compared against a conventional approach. 
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Each control strategy (PPO and evolved GRN) was replicated 10 times with different 

seeds to get a range of independent samples. In total, 60 experiments were conducted 

(30 for each control strategy). 

 

3.3.1 Experiments with the PPO Controller 

To set up the PPO experiments, the run_group_ppo.py file was edited to specify the 

parameters, including the seed, environment, and robot type. After this, the following 

command was executed with the default PPO parameters as used by (Bhatia et al., 

2021): 

 

Fig.29. Command for running PPO 

 

3.3.2 Experiments with the GRN Controller 

To set up the GRN experiments, the run script was modified to specify the experiment 

parameters (e.g. seed, environment, robot type and population size). After this, the 

program was executed to evolve a population of GRN robots. 
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3.3.3 Preliminary Results for GRN 

 

 

Fig.30. Initial performance of GRN 

 

The GRN’s initial best and average performance from a single experiment was 

plotted. These graphs show that the GRN’s best fitness plateaus in every task, and the 

average fitness does not increase much throughout the experiment.  

 

3.3.4 All Results 

Performance of the PPO Controller 
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Fig.31. Performance of PPO 

 

These results indicate that PPO can effectively optimise the ‘speed_bot’ for the 

Walker-v0 task, achieving a median fitness of 10.57. PPO has also shown good 

performance when applied to the ‘carry_bot’ for the Carrier-v0 task, achieving a 

median fitness of 6.03. However, it performed poorly when optimising the 

‘speed_bot’ for the UpStepper-v0 task and only achieved a median fitness of 1.44. 

Compared with the replication results conducted in Chapter 2, PPO generally does 

not perform as well at controlling fixed shapes compared to when coupled with a 

design optimisation algorithm. The only exception is the Walker-v0 task, where PPO 

achieved the maximum fitness possible by reaching the end of the environment. 

 

Initial Performance of the GRN Controller 
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Fig.32. Initial results for the GRN 

 

These results show that the GRN achieved much lower fitness scores than PPO in 

every task. See Appendix E.1 for full performance graphs 

 

3.3.5 Analysis 

To investigate the GRN further, the robot’s behaviour during simulation was analysed. 

Following this, a statistical test was conducted to show whether there is a statistically 

significant difference between the PPO and GRN results. 

 

Behaviour and Network Analysis 

A video of the best-performing robot’s behaviour was inspected. This was taken from 

the Carrier-v0 experiment: 
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Fig.33. GRN’s performance on ‘Carrier-v0’ 

 

The video reveals that the GRN robot can move the block without dropping it; 

however, it moves quite chaotically and slowly. 

A graph was created to plot the robot’s expression levels for each actuator (each 

colour represents one actuator). This shows that the actuator expression levels tend to 

fluctuate unpredictably: 

 

Fig.34. GRN’s actuator levels for ‘Carrier-v0’ 

 

The best-performing robot for the UpStepper-v0 and Walker-v0 tasks shows similar 

behaviour and noisy actuator levels. 

See Appendix F.1 for further behaviour and network analysis 
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Statistical Analysis 

To make a concrete comparison between the GRN and PPO controllers, a statistical 

test was performed for each control task. The Mann-Whitney U Test is a non-

parametric statistical test which tests for differences between two independent groups 

(McKnight, Najab, 2010). This test can determine whether there is a statistically 

significant difference between the results of each control strategy. 

For this test, the Null Hypothesis = There is no difference in the median fitness 

between the GRN and PPO. This test was conducted in R using the built-in 

wilcox.test() method: 

 

Fig.35. Example R output for the Mann-Whitney U Test 

This test produced p-values of 0.00001083 for the Walker-v0 and Carrier-v0 tasks and 

a p-value of 0.0004871 for the UpStepper-v0 task. 

These p-values are less than the standard 0.05 significance threshold; therefore, the 

Null Hypothesis can be rejected in favour of the Alternative Hypothesis which is that 

there is a statistically significant difference between the performance of PPO and 

GRN. Since the GRN’s median performance is less than the PPO, this test shows 

statistically that the GRN performed worse than PPO. 

See Appendix G.1 for box plot comparison charts 
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3.3.6 Conclusions 

While the GRN has shown some effectiveness at controlling a VSR on locomotion 

and object-manipulation tasks, the results and analysis demonstrate that the GRN 

performs worse than PPO. 

One reason could be that the evolutionary algorithm fell into a local optimum and 

could not find a better solution. The next chapter will consider different approaches to 

improve the GRN’s performance. 
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Chapter 4: Refinement of the GRN Model 

This section explores different methods to improve the GRN’s performance. This was 

achieved through an iterative approach to update and test the program, perform 

experiments, collect results, perform analysis, and summarise the findings. 

 

4.1 Refinement Iteration One 

The results from Chapter 3 show that the GRN model can control a fixed-shape VSR, 

but it performs significantly worse than PPO. The GRN’s fitness plateaus, which 

suggests that the Evolutionary Algorithm (EA) may have fallen into a local optima. 

There are several reasons which may have caused this algorithm to perform poorly: 

• Firstly, this algorithm initialises the entire genome with random values. This 

configuration means that the GRN is fully-connected, where every gene regulates 

every other gene. This probably caused the network to be overly saturated with 

noise, which prevented the robot from exhibiting effective actuation. 

 

• Secondly, a high mutation value is applied with a small population size of 36. It is 

likely that this population size is too small to allow for solutions which can 

represent the different parts of the fitness landscape. (Aston et al., 2017) 

A different EA will be considered to refine the GRN model.  
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4.1.1 Alternative Approach 

To address the problem of the GRN being overly saturated, the new approach will 

only initialise 10% of the connections to be randomly connected. The mutation value 

σ will also be reduced for the same reason, and the population size will be increased 

to allow for more solutions. 

The selection process will also be modified to increase population diversity via 

Tournament Selection. Tournament Selection works by choosing individuals from the 

population and selecting the best individual. (Razali, Geraghty, 2011) 

Finally, a crossover operator will be implemented based on (Sims, 1994), who applied 

crossover to evolve rigid creatures. Introducing crossover should improve the 

convergence of the EA since individuals will inherit beneficial traits from their 

parents. (Hassanat, Alkafaween, 2017) 

The following are the steps for the new EA: 

 

Fig.36. Pseudocode for the refined EA 
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For this algorithm, npop = 100,  σ = 0.1 and Tournament Selection is applied with 

tournament size = 2 for Step 5. 

 

4.1.2 Implementation 

Implementing Crossover 

(Sims, 1994) proposed a crossover operator which combines two directed graphs. For 

this operator, the nodes of both parents are aligned, and the parents’ nodes and 

connections are copied to the child graph. Crossover points determine the point where 

the child switches from inheriting nodes from the first parent to the second: 

 

Fig.37. Crossover operation (Sims, 1994)  

Their operator has been implemented by performing single-point crossover. This code 

was developed as a static method in the existing GRN class: 
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Fig.38. My implementation of (Sims, 1994)’s crossover operator 

 

Modifying the Evolutionary Algorithm 

The EA class was modified to implement the new approach. Tournament selection 

was implemented using Python’s random library to choose two randomly sampled 

individuals from the parents. Then the parent with the highest finesses is selected: 

 

Fig.39. Code for implementing Tournament Selection 
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4.1.3 Testing 

To verify that my crossover implementation works, two GRNs were generated with 

dummy data, and crossover was applied to them multiple times. Matplotlib was used 

to visualise the results of each child GRN: 

 

Fig.40. Results from the crossover test 

This shows that the implemented crossover operator correctly combines elements 

from both parents and selects a random crossover point.  

Further Unit Tests were applied to test the newly-implemented methods: See 

Appendix D.3 

 

4.1.4 Experiments 

Experiments were conducted on the refined GRN model to evaluate its effectiveness, 

and the same tasks and robots were used as in Section 3.3. 
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4.1.5 Preliminary Results 

The results of this approach have shown quite a dramatic improvement compared with 

the previous GRN: 

 

 

Fig.41. Refined GRN’s performance 

Unlike the previous iteration, where the fitness scores plateau after a few generations, 

the refined GRN’s fitness does not plateau initially. However, the fitness did plateau 

in the ‘Carrier-v0’ experiment before continuing to increase again.  

The ‘Carrier-v0’ and ‘UpStepper-v0’ experiments were run for 200 generations since 

the fitness score continued to increase. The reason for stopping the experiment at this 

time was due to the computational demands; one experiment took ~8 hrs to evaluate 

on task for 200 generations. 
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The ‘Walker-v0’ experiment was terminated after showing no further improvements 

after half of the simulation’s runtime.  

 

4.1.6 All Results 

Ten experiment samples of the refined GRN were conducted, and each experiment 

was run for a maximum of 200 generations or less if the fitness score did not improve 

in the last 50% of the runtime. 

 

Fig.42. Refined GRN results 

 

These results show that the GRN achieved a median performance comparable to that 

of the PPO on the Walker-v0 task. For the UpStepper-v0 task, the GRN achieved a 

greater median and best fitness performance than the PPO. For the Carrier-v0 task, the 

GRN achieved a lower best fitness performance than the PPO but obtained a higher 

median fitness. See Appendix E.2 for full performance graphs 

 

4.1.7 Analysis 

Behaviour and Network Analysis 
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A video of the best-performing robot for each task was inspected. This was taken 

from the Walker-v0 experiment: 

 

Fig.43. Refined GRN’s performance on ‘Walker-v0’ 

The video reveals that the robot runs quickly and successfully reaches the end of the 

environment. The actuators contract and expand repeatedly, which results in an 

effective running behaviour. 

The actuator expression levels for this robot have been plotted, and this shows that 

certain actuators quickly fall into a regular cyclical pattern: 

 

Fig.44. Refined GRN actuator levels for ‘Walker-v0’ 

 

The best-performing robot for the UpStepper-v0 and Carrier-v0 tasks also shows 

effective actions. 
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See Appendix F.2 for further behaviour and network analysis 

 

Statistical Analysis 

A Mann-Whitney U test was performed to compare the refined GRN and PPO 

performance. This test produced p-values of 0.5787 for the Walker-v0 task, 0.6842 for 

the Carrier-v0 task, and 0.003886 for the UpStepper-v0 task. 

The p-values for Walker-v0 and Carrier-v0 are greater than the standard 0.05 

threshold; therefore, there is no statistically significant difference between the 

performance of the refined GRN and PPO for these tasks. 

However, the p-value for UpStepper-v0 is less than 0.05; therefore, there is a 

statistically significant difference between the groups for this task. Since the GRN’s 

median performance for this task is greater than that of PPO, this test shows 

statistically that the GRN performed better than PPO for the UpStepper-v0 task. 

See Appendix G.2 for box plot comparison charts 

 

4.1.8 Conclusions 

The changes that were made to refine the GRN controller have resulted in robots 

which show effective control in locomotion and object-manipulation tasks. The robots 

performed better in every task than the previous iteration, and the statistical test 

showed that the GRN performed better than the PPO for the UpStepper-v0 task. 

However, when evaluated on the UpStepper-v0 and Carrier-v0 tasks, the GRN 

achieved a lower fitness when compared to the PPO+GA co-design approach. This is 

also the case for the PPO controller (see Chapter 3). This suggests that the robot 
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designs may have prevented the GRN from achieving a higher fitness by constraining 

its behaviour to a fixed morphology. 

A different approach will be considered in the next iteration to co-evolve the robot’s 

controller and shape using a GRN.  

 

4.2 Refinement Iteration Two 

While the previous GRN effectively controlled the robot’s movements, it performed 

worse than the PPO+GA co-design approach. This suggests that the fixed hand-

designed robots are not perfectly suited for EvoGym’s tasks. 

One solution could be co-optimising the robot’s controller and design using a GRN; 

this approach may be able to find better robot shapes. 

 

4.2.1 Alternative Approach 

In biology, GRNs not only control cellular behaviour but they also determine how 

cells develop to form complex multicellular animals. (Peter, Davidson, 2011). This 

idea has been extended to virtual animats by (Joachimczak, Suzuki & Arita, 2014), 

who showed that multicellular soft-bodied animats can be developed from a single 

cell using a GRN and controlled on locomotion tasks. 

In this section, a GRN developmental process based on this previous work will be 

created and adapted for EvoGym. My strategy extends their work by evaluating 

robots on locomotion and object manipulation tasks and utilising EvoGym’s 
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simulator. My strategy will also implement a decentralised controller adapted from 

(Medvet et al., 2020a) to allow voxels to communicate. 

 

GRN Developmental Approach 

Each robot starts as a single voxel in the centre of a 5x5 grid. This voxel contains a 

GRN made of 4 input and output genes and 32 processor genes.  

During the developmental process, some processor genes have special functions: 

• One gene instructs the voxel to divide when its activity exceeds a pre-specified 

threshold.  

• Two other genes indicate the direction in which the divided cell should be placed 

relative to the voxel (left, right, up, or down). 

• Four genes determine the voxel’s fate, each representing the propensity for the 

voxel to become each of the four possible material states. When the voxel 

matures, its fate is determined by the gene with the highest activity. 

The remaining processor genes serve to regulate the activity of other genes. 

When a voxel divides, its GRN controller is copied into the newly-created voxel. 

Additionally, voxels can communicate with their neighbours through signalling input 

and output genes positioned on each side of the voxel.  
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Fig.45. The decentralised GRN controller 

 

This developmental process is simulated for 100 steps. Once the robot has fully 

developed, it is placed in EvoGym’s environment, and every GRN in each of the 

robot’s voxels are stepped. During simulation, voxels retain their signalling genes to 

allow for intercellular communication, and actuators have a single gene to control 

actuation. 

 

4.2.2 Implementation 

The current program will be amended to implement the required features for this new 

model. 

In this approach, multiple voxels operate independently within the robot both during 

and after the developmental process. To model this, a new class: RobotVoxel will be 

developed, which allows one Robot to have many instances of RobotVoxel. 



60 

 

This class will have attributes such as its GRN controller and a location, which will be 

represented as a (row, column) tuple to store the voxel’s location within the robot. 

This will allow voxels to send signals to their neighbours. 

Additionally, a new attribute will be added to the Robot class for storing RobotVoxel 

instances so that the robot’s voxels can be simulated. This class will also initialise one 

RobotVoxel at the centre of the grid to start the developmental process. 

When generating the robot’s shape, some robots may have developed no actuators, 

meaning they are unviable for EvoGym. To address this, these robots will receive an 

immediate penalty fitness of -100. 

 

4.2.3 Testing 

Before conducting experiments, Unit Tests were applied to test the newly-

implemented methods: See Appendix D.4 

The program was then tested to verify that it works as intended by developing 

different robot designs. This was achieved by creating many random robots and 

visualising what is produced: 

 

Fig.46. Results from testing my developmental process 



61 

 

The results show that the program successfully creates various robot designs from 

random genomes. 

 

4.2.4 Experiments 

Previously, the GRN was compared against PPO; however, since both the robot’s 

controller and design will be evolved, it will be compared against the PPO+GA co-

design algorithm, which was replicated in Chapter 2. This approach ensures that the 

co-design GRN can be fairly compared against a baseline co-design approach.  

The evolutionary algorithm used previously was applied; however, the population size 

was increased to 200. This is because optimising the controller and design together is 

a more challenging problem than optimising the controller alone, so the higher 

population size will allow more solutions to be represented. 

Experiments were conducted on the ‘Walker-v0’ and ‘Carrier-v0’ tasks. 

 

4.2.5 Preliminary Results 

The preliminary results show that the co-evolved GRN’s best fitness increases in both 

tasks. The average fitness initially increases sharply as the unviable robots which 

produce no actuators are removed; following this, the average fitness appears to 

stagnate: 
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Fig.47. Co-evolved GRN’s performance 

 

The average fitness appears to skew the results for the best fitness; therefore, the 

graphs were re-plotted without the average fitness. This shows that the best fitness 

increases: 

 

Fig.48. Co-evolved GRN’s performance (without average) 

 

4.2.6 All Results 

Performance of the conventional PPO+GA approach 

Three samples of the conventional PPO+GA approach were collected by replicating 

EvoGym’s results (see Section 2.2.3). 
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Fig.49. PPO+GA results 

These results show that for both tasks, the PPO+GA co-optimisation approach 

performs better than when PPO is applied to control fixed robots. 

 

Performance of the co-evolved GRN 

Ten samples of the co-evolved GRN were conducted, and each experiment was run 

for a maximum of 200 generations or less if the fitness score did not improve in the 

last 50% of the runtime. 

 

Fig.50. Co-evolved GRN results 
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These results show that the co-evolved GRN achieved a best fitness of 10.59 for the 

Walker-v0 task, which is comparable to PPO+GA; however, the GRN achieved a 

lower median score. For the Carrier-v0 task, the GRN achieved a lower performance 

than PPO+GA. See Appendix E.3 for full performance graphs 

 

4.2.7 Analysis 

Behaviour and Network Analysis 

A video of the best-performing robot for each task was inspected. This was taken 

from the Walker-v0 experiment: 

 

Fig.51. Co-evolved GRN’s performance on ‘Walker-v0’ 

Despite only having 6 voxels, the robot performs well: it repeatedly expands and 

contracts its central actuators, which allows it to move quickly and complete the task. 

This cyclical behaviour is also observed in its actuator levels: 
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Fig.52. Co-evolved GRN actuator levels for ‘Walker-v0’ 

 

The best-performing robot for the Carrier-v0 task also shows effective behaviour and 

actuator cycles: See Appendix F.3 

 

Statistical Analysis 

A Mann-Whitney U test was performed to compare the performance between the co-

evolved GRN and PPO+GA. This test produced p-values of 0.006993 for the Walker-

v0 and Carrier-v0 tasks. 

These p-values are less than the standard 0.05 significance threshold, meaning the 

Null Hypothesis can be rejected. Therefore, there is a statistically significant 

difference between the performance of the co-evolved GRN and PPO+GA. 

Since the co-evolved GRN’s median performance is less than the PPO+GA, this test 

shows statistically that the co-evolved GRN performed worse than PPO+GA. 

See Appendix G.3 for box plot comparison charts 
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Diversity Analysis 

While the co-evolved GRN robots were able to produce effective behaviour, it was 

observed that the diversity of robot shapes decreased towards the end of each 

experiment. To illustrate this, the best 20 individuals at the end of an experiment were 

visualised:  

  

Fig.53. The best 20 robots in both tasks at the end of an experiment. Walker-v0 is shown (left) and 

Carrier-v0 (right) 

 

This visualisation shows that for both tasks, there is a lack of diversity at the end of 

the experiment, as most of the best robots have the same shape.  

Quantitative diversity analysis was also conducted, which shows a similar drop in 

diversity: See Appendix H 
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4.2.8 Conclusions 

The results indicate that a GRN can co-evolve the shape and controller of soft-bodied 

VSRs, and my developmental approach can produce a variety of robot designs. See 

Appendix I for the best co-evolved robots 

However, the new approach did not perform as well as the conventional PPO+GA and 

achieved lower median scores in each task. The analysis indicates that the diversity of 

different robot designs decreases over time. The algorithm appears to focus on finding 

a good robot design before optimising the controller for that design. This suggests that 

the algorithm selects sub-optimal robot designs, which causes it to converge 

prematurely. 
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Evaluation and Reflections 

Research and Experiment Approach 

Overall, I believe that this project has addressed the original research question: 

• Can GRNs be evolved to effectively control soft robots on locomotion and object 

manipulation tasks? 

This project has explored and answered this question by conducting experiments 

across three control tasks (two locomotion tasks and one object-manipulation task). 

I ensured that my experimentation technique was robust by conducting multiple 

samples and setting up a fair comparison by evaluating both controllers on the same 

control task using EvoGym. 

Additionally, I applied best practices for conducting research experiments by using 

different random seeds to ensure that each sample was independent, and I documented 

my approach, including the experiment parameters, so that the experiments could be 

replicated. I also performed statistical analysis using the Mann-Whitney U Test to test 

the statistical significance of the results at each iteration. 

In Chapter 4, I considered different strategies to improve the GRN’s performance, 

including implementing an alternative evolutionary algorithm and a GRN 

developmental model to co-design the robot’s controller and shape. 

 

Software Implementation and Testing Approach 
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For implementing software, I followed an iterative development methodology, which 

involved modifying the code to implement new features, testing the code and 

evaluating the model using EvoGym during experiments. This approach was chosen 

rather than a waterfall model since the approach to improve the GRN could not be 

known until after experiments were conducted on the prior iteration. 

 

Fig.54. Iterative Model (Visual Paradigm, 2024)  

I also applied different testing methods, such as Unit Testing and System Testing, to 

ensure that my implemented code was error-free and produced the expected results. 

Using these methods allowed me to identify errors early in the development lifecycle. 

To support these methods, I used GitHub to push commits from PyCharm to back up 

my work during each iteration. 

 

Reflections 

Overall, I am pleased with how I conducted the project and my achievements. I 

followed my project plan; however, I did have to modify the plan to adapt to the 

circumstances. 
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For example, I initially intended to compare the GRN against an ANN approach 

(Tanaka, Aranha, 2022), but unfortunately, I could not get their code to run, so I chose 

to replicate PPO instead. 

Overall, the biggest challenge for this project was managing time, as many 

experiments took multiple days to complete, and I needed a sufficient number of 

samples for each task to perform statistical analysis. I accommodated this by 

reinstalling EvoGym on a remote PC to allow experiments to run overnight whilst 

also running experiments overnight on my laptop. 

There are a couple of things that I would have done differently in this project: 

• I would have decided on a control task and begun the replication experiments 

sooner in the project. I did not anticipate that each experiment would take several 

days, which meant it was challenging to collect enough samples to conduct a fair 

statistical comparison for the second iteration. 

 

• I would have requested a laboratory PC earlier in the project to have more time 

and resources to conduct more experiments. 
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Conclusions 

This project replicated and applied a Gene Regulatory Network to evolve complex, 

soft-bodied robots for locomotion and object-manipulation tasks. An iterative 

methodology was followed both for researching different approaches and 

implementing these to refine the model. 

The findings show that a GRN model can be evolved to effectively control VSRs 

when using an evolutionary algorithm that employs crossover and Tournament 

Selection. This approach was extended to implement a GRN developmental model 

which co-evolves the robot’s shape and controller. These results could be improved by 

preserving the diversity of robot shapes. 

 

Overall, the project’s aims and objectives have been achieved: 

• For Objective 1, this project replicated the work of (Bhatia et al., 2021) using a 

conventional PPO model in Section 2.2. 

 

• For Objective 2, this project implemented (Watson et al., 2014)’s GRN model and 

an evolutionary algorithm in Chapter 3 using Python. 

 

• For Objective 3, this project conducted experiments to compare the GRN with the 

existing PPO model for controlling fixed robot designs in Sections 3.3 and 4.1.4 

and for co-designing robots in Section 4.2.4 
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• For Objective 4, non-parametric statistical tests were conducted following 

experiments to measure the statistical significance of results. While I was able to 

collect a sufficient number of samples for most experiments, in the second 

refinement stage, I was only able to collect 3 samples for the PPO+GA approach, 

as experiments took multiple days.  

 

• For Objective 5, different approaches were successfully implemented to improve 

the GRN’s performance, including an alternative evolutionary algorithm and a 

method for co-evolving the robots’ brain and body. 

 

• For Objective 6, the GRN model was applied to more complex tasks, such as the 

UpStepper-v0; however, due to time constraints, I was not able to apply this task 

in the second refitment iteration. I would have liked to utilise more of EvoGym’s 

tasks; however, I did not have sufficient computational resources or time to 

achieve this. 
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Fig.55. Project Aims and Objectives 

 

There are many interesting ways to expand on this project’s work: 

• In Section 4.2, the robot’s shape and controller were co-evolved using a 

decentralised GRN. Future projects could adapt this to explore how GRNs can 

evolve their sensory inputs so that robots can adapt sensors suited for the task. 

 

• The current EvoGym tasks require robots to learn one behaviour, such as running 

for the locomotion tasks. (Watson et al., 2014) showed that recurrent GRNs have 

memory capabilities and can learn different patterns. Future work could use 

EvoGym to design a task that combines two different environments and explores 



74 

 

whether this GRN model can enable robots to switch between different patterns of 

behaviour suited to each environment.  

 

• This project utilised an abstract recurrent neural network GRN model to control 

and design VSRs. Future work could compare this abstract model with a more 

biologically realistic model to evaluate each model’s capabilities. 
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Appendices 

A. Project Plan 

 



78 

 

 

 

 

 



79 

 

 

 

 

 



80 

 

 

 

 

 



81 

 

 

 

 

 



82 

 

 

 

 



83 

 

 

 

 

 



84 

 

 

 

 

 



85 

 

B. Project GDPR and Ethics Checklist 
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C. Project Poster 
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D. Unit Test Cases for Software Implementation 
 

D.1: Tests for Replicated GRN Model 

 
Unit Test Plan 

 

Test 

No. 

Function and 

Justification 
Test Data Expected Result 

1.1 

calculate_fitness() 

 

To check that the 

fitness calculation 

is correct. 

Scenario 1: 

Two arrays will be passed 

with the same values. 

 

v1 = [1,1,1] 

v2 = [1,1,1] 

The result should 

compute the dot 

product and output: 

 

(1*1) + (1*1) + (1*1)  

 

= 3  

Scenario 2: 

Two arrays will be passed 

with inverse values. 

 

v1 = [1,1,1] 

v2 = [-1,-1,-1] 

The result should 

compute the dot 

product and output: 

 

(1*-1) + (1*-1) + (1*-1)  

 

= -3 

1.2 

develop() 

 

To check that the 

program can 

correctly develop 

the robot’s 

genotype into a 

phenotype. 

Scenario 1: 

Dummy values for 

gene_potentials and an 

empty interaction_matrix 

will be generated and passed 

into develop() with a 

developmental time step of 

1.  

 

gene_potentials = [0, 0.5, 1] 

 

interaction_matrix = [0, 0, 0, 

0, 0, 0, 0, 0, 0] 

 

The result should 

reduce the 

gene_potentials by 20% 

since this is the 

degradation rate and 

output: 

 

0*0.8 = 0,  

0.5*0.8 = 0.4, 

1*0.8 = 0.8 

 

= [0, 0.4, 0.8] 

Scenario 2: 

The same values for 

gene_potentials will be used; 

however, the 

interaction_matrix will be 

changed to add one positive 

connection weight from gene 

3 → gene 2. 

 

gene_potentials = [0, 0.5, 1] 

 

interaction_matrix = [0, 0, 0, 

0, 0, 1, 0, 0, 0] 

The result should 

increase the value of 

gene 2 and clamp the 

output between -1 and 

1. 

 

For gene 2, this should 

calculate: 

 

0.5*0.8 = 0.4 

0.4 + tanh(1) = 1.16152  

 

Clamped output 
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= 1 

 

1.3 

mutate() 

 

To check that the 

program correctly 

mutates the 

gene_potentials 

and 

interaction_matrix 

arrays. 

An empty gene_potentials 

and interaction_matrix will 

be created. 

 

gene_potentials = [0, 0, 0] 

 

interaction_matrix = [0, 0, 0, 

0, 0, 0, 0, 0, 0] 

 

The result should add 

random mutations to 

one randomly chosen 

element within 

gene_potentials and 

interaction_matrix 

 

 

Unit Test Results 

 

Test 

No. 
Results Pass / Fail 

1.1 

Scenario 1: 

 

 
 

Pass 

Scenario 2: 

 

 
 

Pass 

1.2 

Scenario 1: 

 

 
 

Pass 
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Scenario 2: 

 

 
 

Fail 

 

(See below 

for details) 

1.3 

 

 
 

Pass 

 

 
Failed Unit Tests 

 

Test No. Reason for Failure 

1.2 

(Scenario 2) 

This test failed because the result exceeded the maximum value of 

1. It was found that the develop() function did not constrain the 

phenotype values.  

 

This was corrected by adding the following code within develop(): 

 

 
 

The test was repeated and produced the correct output: 
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D.2: Tests for Initial GRN Applied to EvoGym 
 

Unit Test Plan 

 

Test 

No. 
Function and Justification Test Data 

Expected 

Result 

2.1 

WatsonGRN.step() 

 

To check that this method correctly 

updates the gene potentials. 

An instance of 

WatsonGRN with 3 

genes will be 

created, and the 

step() method will 

be run. 

 

The result 

should reduce 

the 

gene_potentials 

by 2% since 

this is the 

degradation 

rate, and there 

are no 

regulatory 

connections. 

 

2.2 

WatsonGRN.set_random_weights() 

 

To check that this method correctly 

creates randomised regulatory 

weights. 

An instance of 

WatsonGRN with 3 

genes will be 

created, and the 

set_random_weights 

method will be run. 

The result 

should set each 

weight with a 

random value 

between -1 and 

1. 

2.3 

Robot.set_inputs() 

 

To check that robots can input 

sensor information to its GRN. 

An instance of 

Robot will be 

created with an 

environment of 

‘Walker-v0’, and 8 

dummy inputs will 

be passed to the 

set_inputs method. 

 

inputs = [0, 1, 1, 0, 

1, 0, 0, 1] 

 

The result 

should show 

that the first 8 

values of robot 

GRN’s gene 

potentials have 

been replaced 

with the 

dummy inputs. 

2.4 

Robot.get_actuator_values() 

 

To check that the robot can provide 

its actuator values. 

An instance of 

Robot will be 

created as 

previously, and it 

will be stepped 

once. 

 

Then, the 

get_actuator_values 

method will be run. 

The result 

should output 

the last 10 

values of the 

robot GRN’s 

gene potentials 

since the 

action_space is 

10. 
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2.5 

GeneticAlgorithm.start() 

 

To check that this method can 

perform a genetic algorithm on a 

population of robots. 

A random 

population of 10 

robots will be 

created and 

evaluated in 

EvoGym. 

The result 

should show 

that the robots 

have been 

sorted 

according to 

their fitness. 

 

A new 

population 

should also be 

created where 

the best 

individual is 

retained with 

mutated 

offspring.   

 

 

 

Unit Test Results 

 

Test 

No. 
Results Pass / Fail 

2.1 

 

 

Pass 

2.2 

 

 

Pass 

2.3 
 

Pass 
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2.4 

 

 
 

Pass 

2.5 

 

   
 

Pass 
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D.3: Tests for Refined GRN 
 

Unit Test Plan 

 

Test 

No. 
Function and Justification Test Data 

Expected 

Result 

3.1 

WatsonGRN.set_random_weights() 

 

This method was updated; 

therefore, this test will check that 

the GRN can correctly create 

randomised regulatory weights. 

An instance of 

WatsonGRN with 3 

genes will be created, 

and the 

set_random_weights() 

method will be run. 

The result 

should set 

10% of 

weights with a 

random value 

between -1 

and 1. 

3.2 

WatsonGRN.mutate_weights() 

 

To check that the GRN can 

correctly mutate its regulatory 

weights. 

An instance of 

WatsonGRN with 3 

genes will be created, 

and the 

mutate_weights() 

method will be run. 

 

The result 

should mutate 

regulatory 

weights by 

adding a 

random value 

to 5% of the 

weights and 

resetting 1% 

of the weights 

to 0. 

 

3.3 

GeneticAlgorithm.start() - 

Tournament Selection 

 

This method was updated to 

introduce Tournament Selection; 

therefore, this test will check that 

the code correctly applies 

Tournament Selection to select the 

robots. 

Ten random robots 

will be instantiated 

and given random 

fitness scores. 

 

The code for 

tournament selection 

will be run on these 

ten to execute a 

tournament of size 

two. 

The result 

should show 

that 2 robots 

were 

randomly 

chosen from 

the population, 

and the 

individual 

with the 

highest fitness 

should be 

selected.  

 

 

Unit Test Results 

 

Test 

No. 
Results Pass / Fail 

3.1 
 

Pass 
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3.2 

 

 

Pass 

3.3 

 

 

Pass 

 

 

 

 

D.4: Tests for Co-evolved GRN 
 

Unit Test Plan 

 

Test 

No. 
Function and Justification Test Data 

Expected 

Result 

4.1 

RobotVoxel.determine_fate() 
 

To check that the decentralised 

controller matures into the correct 

material state based on the values 

of its fate genes. 

An instance of Robot 

will be created, and 

its GRN controller 

will be specified with 

dummy values for its 

fate genes. 

The result 

should show 

that the 

voxel’s fate 

has been 

updated based 

on the highest 

fate gene. 
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4.2 

Robot.develop() 
 

This method was added to allow 

the robot to develop by creating 

instances of RobotVoxel; therefore, 

this test will check that the 

RobotVoxel functions correctly. 

An instance of Robot 

will be created, and 

the develop() method 

will run to simulate 

the developmental 

process. 

The result 

should 

generate a 

robot with 

multiple 

voxels 

connected to 

each other 

within the 5x5 

design space. 

 

 

Unit Test Results 

 

Test 

No. 
Results Pass / Fail 

4.1 

Run 1: 

 

 
 

Run 2: 

 

 
 

Pass 

4.2 

 

 

Fail 

 

(See below 

for details) 

 

 
Failed Unit Tests 

 

Test No. Reason for Failure 

4.2 

This test failed due to a runtime error, which was reported in the 

get_structure() method of the Robot class. 

 

This result was found to be caused by an error within the 

RobotVoxel class when it checks whether a voxel can divide into 

an adjacent voxel. 
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The code allows voxels to be created at index 5, and since the 

indices start from zero, this caused the robot to divide beyond the 

permitted 5x5 design space: 

 

 
 

This was corrected by reducing the maximum index by 1: 

 

 
 

The test was repeated, which showed no errors and produced the 

intended result: 

 

 
 

 
 

 

E. Fitness Graphs 
 

E.1: Initial GRN Performance 
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Appendix Fig.1. Initial GRN fitness for each run 

 

E.2: Refined GRN Performance 
 

 

 

Appendix Fig.2. Refined GRN fitness for each run 

 

 

E.3: Co-evolved GRN Performance 
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Appendix Fig.3. Co-evolved GRN fitness for each run 

 

 

 

 

F. Behaviour and Network Analysis 
 

F.1: Behaviour and Network Analysis for the Initial GRN 
 

Walker-v0 Task 

 

 
 

Appendix Fig.4. GRN’s performance on ‘Walker-v0’ 

The video reveals that while the robot moves forward, it makes hardly any progress 

since it repeatedly starts and stops. 

The plot of the GRN’s actuators reveals that there are no consistent periodic actuation 

cycles, as the actuators appear to fluctuate randomly: 
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Appendix Fig.5. GRN actuator levels for ‘Walker-v0’ 

 

 

UpStepper-v0 Task 

 

 

Appendix Fig.6. GRN’s performance on ‘UpStepper-v0’ 

The video shows that the robot behaves similarly to the Walker-v0 task, where it 

repeatedly starts and stops. The robot was not able to overcome the first step. 

The plot of the GRN’s actuators also shows a similar result as previously, where the 

actuator levels fluctuate with no periodic cycles: 
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Appendix Fig.7. GRN actuator levels for ‘UpStepper-v0’ 

 

 

F.2: Behaviour and Network Analysis for the Refined GRN 
 

UpStepper-v0 Task 

 

 
 

Appendix Fig.8. Refined GRN’s performance on ‘UpStepper-v0’ 

The video shows that the robot initially presents effective actuation which allows it to 

launch itself over the first step; however, it was not able to progress further since it 

froze on the second step. 

While the plot of the GRN’s actuators for this task appears noisy, the behaviour 

analysis initially indicates effective actuation. However, at around 450 steps, the 

actuator levels suddenly fall to 1 or -1, which prevents the robot from moving further 

and causes the robot to freeze in place: 

 
 

Appendix Fig.9. Refined GRN actuator levels for ‘UpStepper-v0’ 
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Carrier-v0 Task 

 

 
 

Appendix Fig.10. Refined GRN’s performance on ‘Carrier-v0’ 

The video shows the robot successfully carrying the block while moving; the robot 

runs fairly quickly without dropping the block. However, it moves slower than in the 

Walker-v0 task and does not manage to reach the end of the environment. 

 

The GRN’s actuators for this task quickly fall into a regular cyclical pattern: 

 

 
 

Appendix Fig.11. Refined GRN actuator levels for ‘Carrier-v0’ 

 

 

F.3: Behaviour and Network Analysis for the Co-evolved GRN 
 

Carrier-v0 Task 
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Appendix Fig.12. Co-evolved GRN’s performance on ‘Carrier-v0’ 

The video shows the robot successfully carrying the block along the terrain without 

dropping it. The robot uses its soft and rigid voxels (shown in grey and black) to 

prevent the block from falling and uses its actuators (shown in blue) to move forward. 

As with the previous iteration, the robot moves slower than in the Walker-v0 task. 

The GRN’s actuators fall into a quick cyclical pattern, which allows for effective 

movements: 

 

Appendix Fig.13. Co-evolved GRN actuator levels for ‘Carrier-v0’ 

 

 

 

 

G. Box Plots 
 

G.1: Comparison of initial GRN and PPO performance 
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Appendix Fig.14. Box plots of initial GRN and PPO performance 

 

 

 

G.2: Comparison of refined GRN and PPO performance 

 

 
 

 
 

Appendix Fig.15. Box plots of refined GRN and PPO performance 
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G.3: Comparison of co-evolved GRN and PPO+GA performance 

 

 
 

Appendix Fig.16. Box plots of co-evolved GRN and PPO+GA performance 

 

 
 

H. Diversity Analysis 
 
The results for the co-evolved GRN indicate that the diversity of different robot 

shapes decreases over time. 

 

To measure this quantitatively, the average phenotypic (shape) diversity of the top 

20 robots in the population has been plotted. This was achieved by calculating the 

difference in shape similarity between each pair of robots for each generation by 

counting the proportion of voxels which are the same in both robots. 

 

The results show that the average similarity decreases sharply over generation 

time for both tasks and remains relatively low: 

 

 

 

 
 

Appendix Fig.17. Average shape similarity between the best 20 robots over generations 

 

Walker-v0 Carrier-v0 
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I. Best-performing Co-evolved GRN Robots 
 

 

 

 
 

 

Appendix Fig.18. The best-performing co-evolved GRN robot in each experiment 

GRN robots optimised for ‘Walker-v0’ 

GRN robots optimised for ‘Carrier-v0’ 


