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Abstract

This project investigates the effectiveness of Gene Regulatory Networks (GRN) for
controlling Voxel-based Soft Robots on locomotion and object manipulation tasks.
GRNs are a biologically-inspired model that has been shown to be effective at
controlling rigid robots; however, this model is under-researched when applied to soft

robots.

An abstract recurrent-based GRN model is implemented in Python and applied within
a soft robot simulator. Different experiments are conducted to compare the

performance of evolved GRN-controlled robots against a baseline approach.

The first experiment studies the GRN’s ability to control hand-designed robots. The
GRN’’s initial performance was poor; it performed statistically worse than the baseline
in every task. After improving the GRN model, it achieved comparable performance

with the baseline approach and outperformed the baseline in one locomotion task.

The GRN model was adapted by implementing a developmental model and a
decentralised controller, allowing the GRN to control the robot’s shape and behaviour.
The results show that the co-evolved GRN designs and controls effective robots for
each task. However, the co-evolved GRN was not able to outperform the baseline

approach.

Overall, the results demonstrate that this GRN model can effectively design and

control autonomous soft robots for locomotion and object manipulation tasks.
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Introduction

Problem Statement and Motivation

One aim for robotics is to develop machines that can operate independently without
human supervision. This has important applications such as search-and-rescue
missions and traversing the harsh terrain of another planet, tasks which are often too
dangerous or infeasible for humans. (Wong et al., 2018) With this comes the challenge

of finding an effective mechanism to control the robot.

Designing a robust controller by hand is difficult since it must adapt to new
environmental conditions. (Patel et al., 2001). As such, Artificial Intelligence methods
have been applied to optimise agent behaviour, including Artificial Neural Networks

(Liu et al., 2023) and Reinforcement Learning (Singh, Kumar & Singh, 2022).

These approaches have traditionally been applied to rigid robots, such as in Karl
Sims’ seminal paper, where the morphology and controllers of 3D block-based robots
are evolved (Sims, 1994). However, rigid robots are constrained by their fixed
structure, which limits their abilities. (Kriegman et al., 2017) This also does not

reflect biology, where organisms have soft components.

The advantages of soft robots, which can morph and adapt to their environment, have
led researchers to investigate how Al can be applied to control soft robots. Recently,
(Bhatia et al., 2021) used Proximal Policy Optimisation (PPO), a reinforcement
learning algorithm, to optimise the controller of Voxel-based Soft Robots (VSR) to
solve locomotion and object manipulation tasks. VSRs are modular robots with

connected voxels that can individually expand and contract. (Hiller, Lipson, 2012)



Gene Regulatory Networks (GRN) are a biologically-inspired model based on the
dynamic interactions within our cells. This model is under-researched and could
provide an alternative method for controlling soft robots compared to conventional

reinforcement learning.

Overview of the Project

This project will investigate the effectiveness of an evolved GRN model for
controlling soft robots. The GRN model will be implemented in Python and applied to
locomotion and object-manipulation tasks. The GRN’s performance will be compared
against PPO through experiments, and different approaches will be considered to

improve the GRN’s performance following initial results.

Research Question

Can GRNs be evolved to effectively control soft robots on locomotion and object

manipulation tasks?



Aims

Explore the effectiveness of Gene Regulatory Networks as a suitable model for
controlling Voxel-Soft-bodied Robots across different simulated control tasks and
environments.

Compare and evaluate the performance of robots evolved using a GRN model with a
conventional model across various control tasks and study the capabilities and
behaviours of each model.

Explore methods to improve the performance of the GRN model.

Objectives

Replicate the findings of a relevant research paper where Voxel-based Soft Robots
are controlled with a conventional model. This will act as the baseline model, which
will be used for comparing against the GRN-inspired model.

Design and implement a GRN model, which can be evolved to control of a soft-
bodied agent to achieve particular tasks.

Conduct experiments to compare the GRN with the existing baseline model on
various agent control tasks.

Use relevant statistical methods to compare and analyse the evolutionary
performance of the robots in each experiment.

Investigate how varying the GRN model's hyperparameters or using a different GRN
model could improve the evolved robots' performance.

If the GRN can successfully control robots to complete a simple task, conduct
further experiments on the GRN model to assess its ability to control robots on more
complex control tasks and environments

Fig.1. Project Aims and Objectives
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Chapter 1: Literature Review

1.1 Gene Regulatory Networks

Gene Regulatory Networks (GRN) originate from biology, where they are used to
infer the complex interactions that occur within cells, as DNA is transcribed into
mRNA and translated into proteins. Certain proteins regulate transcription by binding
to the DNA, which inhibits or activates particular genes and dynamically affects the

cell’s behaviour. (Delgado, Gomez-Vela, 2019)

Gene A Gene B Gene C
“Z’%' gt Y e DNA
= j@%}f }'[%3' f%f? level
3
o Transcription Transcription Transcription
8
e
° mRNA
o level
Translation Translation Translation
Protein
level
o)
o
o
=
g Gene A : ’ ] Gene G
é Activation Cont Inhibition
Fig.2. Example of biological interactions and the inferred model (Delgado, Gomez-Vela, 2019)

The dynamic nature of GRNs means they could be a good model for controlling soft-
bodied agents. GRNs can have recurrent interactions, as shown in Fig.2, which could

generate cyclical feedback loops for walking.

GRN models also exhibit memory. (Watson et al., 2014) showed that evolving an

abstract GRN is equivalent to associative learning of weights in a Hopfield network,
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and their experiments show that a GRN can be evolved to store and recall multiple

patterns.

GRN models have successfully controlled artificial agents in various tasks and

environments. (Cussat-Blanc, Harrington & Banzhaf, 2019)

1.1.1 Gene Regulatory Networks for Rigid Agent Control

A biologically-inspired cell-based GRN model was evolved using a genetic algorithm
to control a 2D robot, where the goal for the robot is to traverse the space without
colliding with obstacles. (Asr, Majd, 2013) Their model uses different genes to code
for proteins, which can combine with other proteins. Proteins can regulate genes if
their structure is similar to the gene’s binding site. Their model successfully controls

the robot using four genes.

Fig.3. Path showing the evolved robot navigating the obstacles (Asr, Majd, 2013)

A similar cell-based GRN was evolved using a genetic algorithm to control a 3D

modular snake robot. (Zahadat et al., 2013) Their model uses fractals to define the
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proteins, and the robot was evaluated on how quickly it could move. This study

suggests that their model can effectively control modular robots.

Another paper evolved a tag-based GRN to control a 2D virtual racecar. (Sanchez,
Cussat-Blanc, 2014) Their GRN consists of abstract proteins composed of ID,
enhancer, and inhibitor tags, and they have three types: input, regulatory, and output.
This model is more abstract than the cell-based models, as some cell processes, such

as protein-to-protein interactions, are not modelled.

This paper found that a GRN can control a simulated car and effectively handle
cooperative and conflicting behaviour within the same network. However, they found

that GRNs generate side effects in larger networks and produce inefficient solutions.

WLT

Longitudinal speed sub
regulatory network

E Input protein
@ Reg‘:lalory
o
proain
—> Enhances q y
— = Inhibits &
o§( BoN
gay a2z
Fig4. Diagram of the GRN (Sanchez, Cussat-Blanc, 2014)

A similar abstract GRN was used to control 2D robots in simple tasks such as

reaching a light source. (Moreira, Renno-Costa, 2021) Their model contains sensor,
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processor and controller genes with recurrence connections. They found that larger

GRNs are necessary for complex tasks; however, too many genes can introduce noise.

1.1.2 Gene Regulatory Networks for Soft Agent Control

While most GRNs have been applied to control rigid agents, they have also been

applied to control soft-bodied agents:

A recurrent neural-network GRN was evolved to control 2D soft-bodied animats for
locomotion. (Joachimczak, Suzuki & Arita, 2014) Interestingly, this GRN was also
used to control the animat’s shape via a developmental process, where each animat is
grown from a single cell, which progressively divides to form a multicellular
organism. This paper utilised the NEAT algorithm to evolve the animats’ GRNs,

producing diverse morphologies that exhibit animal-like gaits.

e =

(a) “dog”, a 235 cell individual moving right

(b) “monkey”, 254 cells, moves right

AR ANA

(c) “biped”, 253 cells, moves left

2 A e P AP

(d) “kangaro”, 210 cells, moves right

o

(e) large animat, 350 cells (f) large animat, 484 cells
Fig.5. Soft-bodied animats developed and controlled by the GRN (Joachimczak, Suzuki & Arita,
2014)
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1.2 Voxel-based Soft Robots

Voxel-based Soft Robots (VSRs) are modular robots consisting of voxels which can
expand and contract. They have sparked interest amongst researchers, as they can
exhibit animal-like behaviours, and their modular design could allow them to be more

easily constructed in the physical world than other soft robots. (Hiller, Lipson, 2012)

1.2.1 Existing Simulators for Voxel-based Soft Robots

Open-source software has been developed to simulate VSRs, and they can provide a
benchmark for comparing different models. The following tools have been used

previously to simulate VSRs:

e Voxelyze (Hiller, Lipson, 2014) — This simulator is written in C++ and uses a
mass-spring model. It can simulate 3D VSRs accurately with heterogeneous
materials of differing stiffnesses and densities in a physically accurate

environment. This software does not implement any control tasks.

Voxelyze was used by (Cheney et al., 2014), where they evolved the robot’s shape
for locomotion using CPPN-NEAT, a generative encoding algorithm. Their robots
consist of different materials with pre-specified frequencies to control actuation.

They found that CPPN-NEAT can generate a diverse range of behaviours.
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e 2D-VSR-Sim (Medvet et al., 2020b) — This simulator is written in Java and uses a
mass-spring model. It can simulate 2D VSRs and provides an implementation of a
locomotion task. However, this simulator does not implement other tasks, such as

object-manipulation.

This simulator has been used to simulate VSRs on locomotion tasks. For example,
(Pigozzi, Medvet, 2022) evolved an ANN neural controller and conducted

experiments on two fixed robot shapes.

(a) Biped

Fig.7. 2D VSRs simulated using 2D-VSR-Sim (Pigozzi, Medvet, 2022)

e EvoGym (Bhatia et al., 2021) — EvoGym was recently developed as a benchmark
for comparing algorithms to co-design the body and brain of 2D VSRs. The
software is written in C++ and uses a mass-spring model with an accessible
Python interface. The robots can have different materials, such as rigid, soft, and
actuator voxels. EvoGym implements more than thirty locomotion and object

manipulation control tasks.
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EvoGym also implements three benchmark co-design algorithms. In these
algorithms, PPO optimises the controller for robot designs generated by a different

design algorithm.

Fig.8. 2D VSR generated using EvoGym optimised for carrying (Bhatia et al., 2021)

1.3 Keyv Takeaways

Studies have demonstrated that cell-based GRNs can control robots. However, these
complex models have only been applied to simple rigid tasks such as a dot traversing

a maze. (Asr, Majd, 2013)

In contrast, abstract GRNSs, such as recurrent-based GRNSs, have been used in more
varying and challenging tasks, such as controlling soft-bodied animats on locomotion
tasks. (Joachimczak, Suzuki & Arita, 2014) Therefore, it seems appropriate for this
project to use an abstract model for controlling soft-bodied agents. While these
abstract models do not implement the entire transcription and translation processes,

they model the fundamental aspects: recurrent gene interactions.

Previous studies have used evolutionary algorithms to optimise the GRN, producing
successful results on various problems. Therefore, this approach will be used in this

project.

Considering different VSR simulators, EvoGym implements a variety of locomotion
and object-manipulation tasks and includes benchmark co-design algorithms which

are not present in other simulators. EvoGym is the most appropriate simulator for this
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project and will be used to simulate the VSRs for the GRN and conventional PPO

models.

1.4 Under-Researched Areas

Many studies that used GRNs were applied to rigid control tasks, such as controlling a
fixed virtual car (Sanchez, Cussat-Blanc, 2014). However, biology has evolved soft-

bodied animals made from flexible materials.

Most control tasks that are used with GRNs are purpose-built for each study.
However, the lack of standardised tasks makes it difficult for researchers to compare
the performance between different algorithms. A benchmark VSR simulator will be

used to make a fair comparison between algorithms.

The previous studies on evolving soft robots only utilise locomotion-based tasks.
What has not been explored is whether GRNs can be applied to control soft robots on

other tasks, such as object manipulation.
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Chapter 2: Replication of Previous Work

Before applying the GRN model to the EvoGym control tasks, the model and control

tasks will be independently replicated alongside selected results from relevant papers.

2.1 Replicating A Suitable GRN Model

Having considered different GRN models in Chapter 1, the models that appear most
feasible for evolving VSRs are abstract recurrent-based models. Despite not being as
biologically realistic, they are inspired by the regulatory interactions that occur within
cells. They have been shown to achieve good results on locomotion and obstacle-

avoidance tasks. (Joachimczak, Suzuki & Arita, 2014) (Moreira, Renno-Costa, 2021)

Generally, these approaches model the GRN as a directed graph of genes, where each
gene activates or inhibits other genes through weighted edges. Each gene possesses an
activity level representing how much of that gene exists. Genes are grouped into three
classes: sensors, which take environmental inputs; controllers, which control the
agent’s actuators; and processors, which regulate gene activity. (Moreira, Renn6-

Costa, 2021)

. = Sensor
‘ = Controller
. = Processor

Fig.9. The abstract GRN used by (Moreira, Renno-Costa, 2021)



One paper showed that recurrent-based GRNs can exhibit associative memory
equivalent to a Hopfield network and can learn and recall multiple patterns. (Watson
et al., 2014) Their model will be replicated and implemented in Python alongside

some of their experiments.

2.1.1 Overview of Methodology

(Watson et al., 2014)’s Model

This paper models the individual’s development using a recurrent GRN. The
individual’s phenotype is described by a set of N phenotypic traits at a given
developmental time step P(t), represented by a vector of real numbers. The
individual’s genotype consists of two parts: a vector of direct effects on traits, G, and
the elements b;; of an interaction matrix, B. This can model an abstract GRN, where P
represents a pattern of gene activity levels, and B represents a network of up and

down regulatory interactions.

For every developmental step, the activity level of each gene p; within the phenotype

vector is updated according to the following equation:

n

pi(t+1) = pi(t) + 110 <Z

j=0

biij(t)> — 1,p;(t)

They chose 74 =1 for the rate constant, which controls the magnitude of the
interaction terms and 7, = 0.2 for the decay rate. They applied a non-linear function to

the sum of weighted incoming connections using a(x) = tanh(x).
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The individual is developed for a set number of developmental time steps.

Evolutionary Model

Unlike conventional evolutionary algorithms, which evaluate a population of
genotypes over several generations, (Watson et al., 2014) used a Hill-Climbing
selection model. This is a simple optimisation technique which iteratively explores the
local search space to find the optimal solution by making small mutations to the
genome. In this technique, only mutations that result in better fitness from the

previous iteration are accepted.

Experiments

The paper conducted experiments on the GRN to test its ability to learn bit-patterns:

e In Experiment 1, the GRN is tasked with learning a single pattern:
[1,1,-1,-1,-1,1,-1,1].

e In Experiment 2, the GRN is tasked with learning two patterns:
[1,1,-1,-1,-1,1,-1,1] and [1,-1,1,-1,1,-1,-1,-1]. During simulation, the current

target pattern alternates between these arrays every 2000 iterations.

To evaluate the GRN’s fitness, the phenotype is compared to the current target
pattern; this is calculated by computing the dot product between the phenotype and

the target.

Replicating the Model and Experiments in Python

21



Python has been chosen as the programming language to implement the GRN model
since it is a high-level language with many libraries that can help build the solution.

Two libraries will be used:

e NumPy will be used since it can generate random uniform values for mutating
the genome. This library also contains special arrays optimised to work faster

than traditional Python arrays; these will be used to store the genome.

e Matplotlib will also be used for its plotting features to visualise the data from

the experiments and test that the model works correctly.

An iterative development and testing approach has been chosen to replicate the GRN
model so that bugs can be identified and corrected quickly. This will be achieved with
PyCharm IDE, which was chosen due to its built-in debugger with breakpoints. It is
also easy to view the console output alongside the program in this IDE, which will be

helpful for testing.

Unit Tests will be performed to test each method. Following this, a fitness graph will
be generated to check that it increases monotonically, which is the expected result for
Hill-Climbing. After testing, graphs will be plotted and compared against the results

presented by the paper to verify that they match.

2.1.2 Implementation

Different functions were created to implement the GRN, such as one for calculating
fitness and one for developing the genotype. This makes the code clearer and easier to

read:
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def calculate_fitness(vecl, vec2):

return np.dot(vecl, vec2)

2 usages

def develop(gene_potentials, interaction_matrix, T):
gene_count = len(gene_potentials)
phenotype = np.zeros(gene_count)

for t in
# Calculate n ene potentials

for i in range(gene_count):
sum_of_activities = 0
for j in range(gene_count):
sum_of_activities += (interaction_matrix[m] % gene_potentials[j])

m+= 1

# Applies the GRN equation

phenotype[i] = gene_potentials[i] + rate#math.tanh(sum_of_activities) - degradation_ratexgene_potentials[i]

return phenotype

Fig.10. Screenshot showing the develop() and calculate_fitness() functions

After implementing each function, Unit Tests were conducted to verify their

correctness: See Appendix D.1 for Unit Tests

The whole solution was tested by running an experiment and plotting the fitness

graph. This initially produced a strange result where the fitness was unstable:
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Fig.11. Initial plot of the GRN s fitness
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This result suggests that there is a bug in the code since the fitness should increase
monotonically. To investigate this, PyCharm’s debugger was used to inspect the

program.

During debugging, it was found that the result was stored back in the same array when
the gene potentials were developed by the develop() function. This meant that when
the mutated genotype was developed, the mutation was adopted before evaluating
whether it was beneficial. This error was corrected by adding a separate phenotype

array to store the result:

# Develop genotype

gene_potentials = develop(gene_potentials, interaction_matrix, max_time_step)

# Develop genotype

phenotype = develop(gene_potentials, interaction_matrix, max_time_step)

Fig.12. The code before (top) and after (bottom) correcting the bug

The test was repeated to check that the issue had disappeared. The results show the

intended behaviour for Hill Climbing:

T T T T T T
0 200 400 600 800 1000
Generations

Fig.13. Plot of the GRN s fitness after correcting the bug
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2.1.3 Results

After testing the code, Experiments 1 and 2 were replicated from (Watson et al.,

2014), and the results were plotted to check that they match the paper’s results:

Experiment 1: Single Selective Environment
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Fig. 14. Experiment 1: Graph of GRN s gene potentials and interaction matrix on the left (Watson et

al., 2014) compared with my replicated graphs on the right

Experiment 2: Varying Selective Environment: Multiple Memories
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Fig.15. Experiment 2: Graph of GRN s gene potentials and interaction matrix on the left (Watson et

al., 2014) compared with my replicated graphs on the right

2.1.4 Summary
Watson’s GRN model has been successfully replicated and implemented in Python.

The results show their model can exhibit memory capabilities by learning bit patterns.

2.2 Replicating A Suitable Control Task

An existing simulator will be replicated to provide a fair environment for conducting
experiments. EvoGym was chosen since it has different locomotion and object

manipulation control tasks which are not present in other simulators.
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2.2.1 Overview of Methodology

EvoGym

EvoGym is a multi-material VSR simulator, where each robot can consist of actuators
(vertical and horizontal) which expand and contract, as well as soft and rigid voxels
which do not produce actuation. EvoGym provides over 30 control tasks, such as
carrying a block and walking up a hill. Each task has a reward function which

evaluates the robot’s performance.

Evolution Gym Co-Design Algorithm
Back-End Soft Body Simulator ,I\
A B verti B
Vertical Actuator x Design Optimization
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Final Reward

Task-Specific Environments v
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New Design

1
1
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.
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.
.

C

— =1 s

Control Optimization

Action
Design

Observation
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Evolution Gym

A

Fig.16. Overview of EvoGym (Bhatia et al., 2021)

Co-optimisation Algorithms

EvoGym provides three approaches for co-optimising the robot’s shape and controller.
PPO is used to optimise the controller in each approach and different design
optimisation algorithms optimise the robot's shape: Bayesian Optimisation, Genetic

Algorithm and CPPN-NEAT.

The paper found that PPO with Genetic Algorithm (PPO+GA) performed better than

the other approaches. To verify the paper’s results, PPO+GA will be replicated across

a selection of control tasks.
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2.2.2 Running EvoGym Experiments

Installation of EvoGym

EvoGym was installed from the GitHub repository by following the online
instructions. A custom Python virtual environment was created to hold the simulator's

dependencies.

Replicating PPO+GA with EvoGym

EvoGym provides over 30 different control tasks, and a selection of these will be

replicated:

e Locomotion Tasks (Walker-v0, UpStepper-v0)

e Object Manipulation Task (Carrier-v0)

(Bhatia et al., 2021) conducted three tests for each environment using different seeds.
Running the experiment multiple times provides a more accurate way of comparing
algorithms; therefore, three experiments with different seeds will be replicated for

each environment.

EvoGym contains files for running each benchmark algorithm, such as ‘run-ga.py’ for
running the PPO+GA algorithm. Before running this file, the seed for the experiment

was set so that independent samples could be collected.

The following command was executed to run each experiment, and the -env-name
argument was modified to specify the control task. All of the remaining arguments

were set the same as what was used in the paper to ensure a fair comparison:
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python run_ga.py --env-name "Carrier-v@" --algo ppo --use-gae --1lr 2.5e-4 --clip-param

0.1 --value-loss-coef 8.5 --num-processes 4 --num-steps 128 --num-mini-batch 4 --log-
interval 100 --use-linear-lr-decay --entropy-coef ©.01 --eval-interval 50

Fig.17. Command that was executed to run PPO+GA on the ‘Carrier-v0’task

Initially, co-design experiments were replicated on my laptop with a CPU speed of
2.40GHz and 8 processors. With this setup, each generation of one experiment took
~1-2 hours, even when taking advantage of multiprocessing. Since some experiments
needed to be run for 30 generations and replicated over 3 different seeds, it took over
a week for the algorithm to be replicated on a single environment. Due to the high
computational requirements, it was decided to reinstall EvoGym on a remote desktop

so experiments could run overnight.

2.2.3 Results

The replication results have been plotted, indicating that the reward values achieved
roughly match the values presented in the original paper. It is expected that the results
are not exactly the same as the paper’s results since these replication experiments

were conducted using different seeds from what was used in the paper:

29



Carrier-vo Performance of PPO and GA on 'Carrier-v0' task
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Fig.18. Results taken from (Bhatia et al., 2021) are shown (left) compared with my replicated results

(right). The solid line represents the average performance between 3 runs, and the shaded region
represents the variance

To verify that the algorithm produces valid robots, EvoGym’s in-built visualiser was

used to view the best-performing robot for each task:
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a3 - )

Fig.19. The best-performing robot for each environment. UpStepper-v0 (lefi), Walker-v0 (centre) and
Carrier-v0 (right).

2.2.4 Summary
A selection of locomotion and object manipulation tasks from EvoGym have been
replicated. The results demonstrate that the simulator and control tasks work correctly

and can generate reproducible results.
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Chapter 3: Application of the GRN Model

In this section, the GRN model will be implemented within EvoGym. This will
involve designing, developing, testing, and integrating new classes to work with
EvoGym so that GRN robots can be evolved and evaluated on EvoGym’s control

tasks.

Experiments will be conducted with the GRN and PPO controllers, and they will be
applied to control different fixed robots for locomotion and object-manipulation tasks.
Results will be compared and analysed to determine whether a GRN can effectively

control a VSR and perform similarly or better than PPO.

3.1 Methodology

Task: Controlling Robots with Fixed Shapes

EvoGym provides two hand-designed robots:

e speed _bot — This robot has been designed for speed. It has 10 horizontal
actuators, 5 rigid voxels and 1 soft voxel.
e carry_bot —This robot has been designed to carry an object. It has 8 horizontal

actuators, 4 vertical actuators, 3 rigid voxels and 4 soft voxels.
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Fig.20. speed_bot is shown (left) and carry bot (right)

These robots will be used to compare the performance of the GRN controller against
the PPO controller. Results will be collected and analysed to evaluate the GRN’s

effectiveness.

The speed _bot will be evaluated on two locomotion tasks:

1. Walker-v0: This task evaluates the robot on a flat terrain with no obstacles.
EvoGym classifies this as an easy task.
2. UpStepper-v0: This task evaluates the robot’s ability to climb stairs of

varying lengths. EvoGym classifies this as a medium task.

The carry bot will be evaluated on one object manipulation task:

3. Carrier-v0: This task evaluates the robot’s ability to catch and carry a box

along a flat terrain. EvoGym classifies this as an easy task.

Genome Representation

To apply the GRN model to these robots, the number of genes within the GRN must

be specified. In EvoGym, the observation space (i.e., the number of sensors provided
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to the robot) is dependent on the shape of the robot and the control environment. The

action space is equal to the number of actuators within the robot.

To ensure that the GRN has enough genes to map the observation and action spaces,

the total number of genes will be calculated using this equation:

size(observation_space) + size(processor_genes) + size(action_space)

observation space and action space can be determined by querying EvoGym’s in-

built methods. The number of processor genes is a model parameter that was set to 32.

The robot’s genome consists of regulatory interactions between genes. This can be
represented using an adjacency matrix of real values between -1 and 1, which will be
flattened into a 1-dimensional array. With this configuration, a linear genome can
represent a fully-connected recurrent network, where each gene has a regulatory effect

on every other gene, including itself.

Sensor Genes Processor Genes Actuator Genes
sizefobservation_space) 32 size(action_space)
r N N I
-0.83, -0.25, 0.09, 1, -0.56, 0.39, -0.24, 0.07, -0.71, -0.81, -0.69, -0.1, 0.86, 0.33, -0.75, -0.88, 0.03, -0.89, 0.21,
0.91, 0.85, 0.91, -0.62, -0.72, 0.12 ... -0.14, 0.83, -0.51, 0.4, ... 0.87, ...
- /
~

Total number of elements within genome
= (number of genes)?

Fig.21. Genome representation

Evolutionary Algorithm

(Watson et al., 2014) used a Hill-Climbing selection model, which was shown to work

well for learning simple bit-patterns. However, it is unlikely that Hill-Climbing would
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find a suitable controller since it is ineffective at optimising problems with multiple

local optima. (Priigel-Bennett, 2004)

Evolutionary algorithms can work on soft-bodied control tasks and will be used
instead. This approach was successfully used by (Nadizar et al., 2023) to evolve

different VSR controllers for locomotion tasks.

The following are the steps for the Evolutionary Strategy used by (Nadizar et al.,
2023), which has been adapted to evolve a population of GRNs:
1. Create an initial population of np, individuals by generating a random
interaction matrix for each individual, which consists of elements sampled
from a uniform distribution between -1 and 1.

2. Evaluate each individual onh an EvoGym task and retrieve their fitness.

3. Select the fittest X% of individuals as parents and compute the element-wise
mean p of their interaction matrices.

4. Copy the fittest individual to the new population for the next generation.

5. Generate offspring from p by adding random Gaussian noise N(@, o) to each
element. Repeat this until the new population size equals nyp

6. Repeat Steps 2 to 5 for each generation.

Fig.22. Pseudocode for the Evolutionary Strategy

The parameters for this algorithm are set to: npop =36 and ¢ = 0.35.

Furthermore, the GRN’s decay rate was reduced from 0.2 to 0.02 since this lower

value was found to work better for EvoGym.
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3.2 Implementation

Before writing any code, the problem was decomposed into smaller parts to determine
the key requirements for the program. Decomposition makes it easier to understand

what is needed to implement the solution.

3.2.1 Problem Decomposition

The following key components of the solution were identified:

This will begin an evolutionary experiment and specify the parameters

Run Script LV :
(such as population size, environment, and seed).

Evolutionary | 1his will initialise a random population of robots and apply an
Algurithmt Evolutionary Algorithm to the current population to determine which
robots will be added to the next generation.

Robot This class represents an individual robot.

GRN This class represents the robot’s controller. One instance of this class
will be created for each robot.

Multiprocessing | This will process fitness evaluations in parallel by taking advantage of
Manager multiprocessing, thereby reducing the experiment’s runtime.

Fig.23. Key components of the solution

3.2.2 UML Diagrams

A UML Communication Diagram was created to visualise how the classes work

together. The black boxes represent each component that will be implemented:
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Command Prompt

1. execute_python()

2. start()
—

Run Script

5. send_jobs()

Fig.24.

9. save_results()

File System

3. instantiate_robots()

ll

4, instantiate_controller()
—

Genetic
Algorithm

8. return_results()

CPU Core
g.run jobl)
+ - EvoGym
7 return,_ﬁtnesso '
Multiprocessing . :
e 6. run_jopy)
— CPU Core
7. rety ) m‘ » EvoGym
urn"f"”ess{)

UML Communication Diagram

UML Class Diagrams were created to depict the required attributes and methods for

the main classes:

GeneticAlgorithm

+ population_size : int
+ max_generations : int
+ environment : string
+ population : Robot[]

«instantiate»

+ start() : void

Fig.25.

Robot

+ fitness : float

+ environment : string

3| * action_space : int

+ observation_space : int
+ controller : WatsonGRN
+ structure : ndarrayf]

«instantiate»

+ step() : void

+ set_sensor_inputs(ndarray) : void
+ get_actuator_outputs() : ndarray
+ set_fitness(float) : void

+ get_fitness() : float

UML Class Diagrams
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WatsonGRN

+ RATE : float = 1

+ DEGRADATION_RATE : float = 0.2
+ gene_count : int

+ gene_potentials : ndarray

+ interaction_matrix : ndarray

+ phenotype : ndarray

+ step() : void
+ get_phenotype() : ndarray
+ mutate_weights() : void




3.2.3 Programming and Testing

After designing the system, classes were implemented in Python via Object-Oriented
Programming (OOP). Each class was placed into a different file to make it easier to

manage the code.

Python was used since it is the language used by EvoGym, and using the same
language allows the model to be easily integrated with their control tasks. OOP was
chosen since it provides a modular framework, making adding or modifying
functionality for individual classes easier without needing to rewrite the entire

program. (Sushant Gaurav, 2023)

Unit Testing was applied by testing small code segments to verify their correctness,

such as checking the step() method within the WatsonGRN class. See Appendix D.2

for Unit Tests

Integration Testing was then applied to check that modules work together correctly,
such as testing the Robot and WatsonGRN classes simultaneously. Finally, System
Testing was conducted to test the entire solution by observing the fitness values

outputted.

38



C\Windows\system32\cmd.exe - python testpy

Evolution
Evolution

After implementing the program, the Task Manager was inspected to verify that the

program was applying multiprocessing correctly:

i Task Manager
File Options View

Processes Performance App history Startup Users Details Services

T 87% 56%

Name CPU Memory
v @ Windows Command Processor (8) 78.6% 4159 MB
P python 22.1% 61.5 MB
P python 215% 60.2 MB
P python 149% 59.2 MB
@l Console Window Host 0.1% 6.5 MB
P python 0%  109.7 MB
Bl C\Windows\system32\cmd.exe - python test.py 0% 1.0 MB
B Windows Command Processar 0% 0.9 MB
P Python 0% 55.0 MB
Fig.27. Task Manager shows 2-3 active Python processes

The Task Manager only showed 2-3 active Python processes. This suggests that the
jobs were executed in series, meaning that multiprocessing was not working as

intended.
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After inspecting the code, an issue was identified that caused the GRN to be
instantiated before jobs were sent to the Multiprocessing Manager. This used a lot of

CPU time and increased the experiment’s runtime.

The program was modified to eliminate this issue. The code responsible for
instantiating the robot’s controller in the Robot class was moved into a new class,
which is only called to instantiate the robot’s GRN during a process job rather than in
the main program. After making this change, the test was repeated, and the Task

Manager now shows multiprocessing working:

12 Task Manager
File Options View

Processes Performance App history Startup Users Details Services

~ 100% 70%
Name CPU Memory
~ [ Windows Command Processor (12) 95.3% 481.6 MB (
P python 12.2% 410 MB (
P python 12.2% 39.8 MB (
P python 12.1% 413 MB (
P python 11.9% 416 MB (
™ python 11.9% 40,6 MB (
P python 11.7% 40.0 MB (
P python 11.0% 39.5 MB (
P python 0% | 1346MB (
B Console Window Host 0% 40 MB (
Wl C\Windows\system32\cmd.exe - python test.py 0% 0.2 MB (
@@ Windows Command Processor 0% 0.5 MB (
P python 0% 16.5 MB (
Fig.28. Task Manager shows the modified program executing on many processes

3.3 Experiments

To explore the behaviour and effectiveness of the implemented GRN controller,
experiments were conducted on three control tasks: Walker-v0, UpStepper-v0 and
Carrier-v0. These experiments were also conducted with a PPO controller, which

allows the GRN to be compared against a conventional approach.
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Each control strategy (PPO and evolved GRN) was replicated 10 times with different
seeds to get a range of independent samples. In total, 60 experiments were conducted

(30 for each control strategy).

3.3.1 Experiments with the PPO Controller

To set up the PPO experiments, the run_group ppo.py file was edited to specify the
parameters, including the seed, environment, and robot type. After this, the following
command was executed with the default PPO parameters as used by (Bhatia et al.,

2021):

python run_group_ppo.py --algo ppo --use-gae --1r 2.5e-4 --clip-param 0.1 --value-loss-

coef 0.5 --num-processes 4 --num-steps 128 --num-mini-batch 4 --log-interval 180 --use-
linear-1lr-decay --entropy-coef 0.01 --eval-interval 50

Fig.29. Command for running PPO

3.3.2 Experiments with the GRN Controller

To set up the GRN experiments, the run script was modified to specify the experiment
parameters (e.g. seed, environment, robot type and population size). After this, the

program was executed to evolve a population of GRN robots.
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3.3.3 Preliminary Results for GRN

Initial Performance of GRN on 'Walker-v0' task Initial Performance of GRN on 'Carrier-v0' task
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Fig.30. Initial performance of GRN

The GRN’s initial best and average performance from a single experiment was
plotted. These graphs show that the GRN’s best fitness plateaus in every task, and the

average fitness does not increase much throughout the experiment.

3.3.4 All Results

Performance of the PPO Controller
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Results for PPO on Fixed Robot Shapes

Produced from 10 independent samples for each task
Task Robot Median Best Worst IQR
Walker-v0 speed_bot 10.5719 10.5789 10.5635 0.0039
UpStepper-v0 speed_bot 14416 1.6187 1.4040 0.0592
Carrier-v0 carry_bot  6.0312 10.5357 3.5226 2.3822

"IQR = Interquartile range

Fig.31. Performance of PPO

These results indicate that PPO can effectively optimise the ‘speed bot’ for the
Walker-vO0 task, achieving a median fitness of 10.57. PPO has also shown good
performance when applied to the ‘carry bot’ for the Carrier-v0 task, achieving a
median fitness of 6.03. However, it performed poorly when optimising the

‘speed_bot’ for the UpStepper-v0 task and only achieved a median fitness of 1.44.

Compared with the replication results conducted in Chapter 2, PPO generally does
not perform as well at controlling fixed shapes compared to when coupled with a
design optimisation algorithm. The only exception is the Walker-v0 task, where PPO

achieved the maximum fitness possible by reaching the end of the environment.

Initial Performance of the GRN Controller
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Initial Results for GRN on Fixed Robot Shapes

Produced from 10 independent samples for each task

1

Task Robot Median  Best Worst IQR
Walker-v0 speed_bot 1.9014 3.3166 1.4347 0.3364
UpStepper-v0  speed_bot 1.4076 1.4237 1.3527 0.0260
Carrier-v0 carry_bot  0.8985 1.3042 0.5260 0.2777

"IQR = Interquartile range

Fig.32. Initial results for the GRN

These results show that the GRN achieved much lower fitness scores than PPO in

every task. See Appendix E.1 for full performance graphs

3.3.5 Analysis

To investigate the GRN further, the robot’s behaviour during simulation was analysed.
Following this, a statistical test was conducted to show whether there is a statistically

significant difference between the PPO and GRN results.

Behaviour and Network Analysis

A video of the best-performing robot’s behaviour was inspected. This was taken from

the Carrier-v0 experiment:
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Fig.33. GRN s performance on ‘Carrier-v0’

The video reveals that the GRN robot can move the block without dropping it;

however, it moves quite chaotically and slowly.

A graph was created to plot the robot’s expression levels for each actuator (each

colour represents one actuator). This shows that the actuator expression levels tend to

Jili
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fluctuate unpredictably:

1.00 +
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0.50 1

0.00 A1
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Actuator expression levels
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Fig.34. GRN s actuator levels for ‘Carrier-v0’

The best-performing robot for the UpStepper-v0 and Walker-v0 tasks shows similar

behaviour and noisy actuator levels.

See Appendix F.1 for further behaviour and network analysis
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Statistical Analysis

To make a concrete comparison between the GRN and PPO controllers, a statistical
test was performed for each control task. The Mann-Whitney U Test is a non-
parametric statistical test which tests for differences between two independent groups
(McKnight, Najab, 2010). This test can determine whether there is a statistically

significant difference between the results of each control strategy.

For this test, the Null Hypothesis = There is no difference in the median fitness
between the GRN and PPO. This test was conducted in R using the built-in

wilcox.test() method:

Wilcoxon rank sum exact test

data: ppo_results and grn_results
W = 100, p-value = 1.083e-05

alternative hypothesis: true location shift is not equal to 0

Fig.35. Example R output for the Mann-Whitney U Test

This test produced p-values of 0.00001083 for the Walker-v0 and Carrier-v0 tasks and

a p-value of 0.0004871 for the UpStepper-v0 task.

These p-values are less than the standard 0.05 significance threshold; therefore, the
Null Hypothesis can be rejected in favour of the Alternative Hypothesis which is that
there is a statistically significant difference between the performance of PPO and
GRN. Since the GRN’s median performance is less than the PPO, this test shows

statistically that the GRN performed worse than PPO.

See Appendix G.1 for box plot comparison charts
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3.3.6 Conclusions

While the GRN has shown some effectiveness at controlling a VSR on locomotion
and object-manipulation tasks, the results and analysis demonstrate that the GRN

performs worse than PPO.

One reason could be that the evolutionary algorithm fell into a local optimum and
could not find a better solution. The next chapter will consider different approaches to

improve the GRN’s performance.
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Chapter 4: Refinement of the GRN Model

This section explores different methods to improve the GRN’s performance. This was
achieved through an iterative approach to update and test the program, perform

experiments, collect results, perform analysis, and summarise the findings.

4.1 Refinement Iteration One

The results from Chapter 3 show that the GRN model can control a fixed-shape VSR,
but it performs significantly worse than PPO. The GRN’s fitness plateaus, which
suggests that the Evolutionary Algorithm (EA) may have fallen into a local optima.

There are several reasons which may have caused this algorithm to perform poorly:

o Firstly, this algorithm initialises the entire genome with random values. This
configuration means that the GRN is fully-connected, where every gene regulates
every other gene. This probably caused the network to be overly saturated with

noise, which prevented the robot from exhibiting effective actuation.

e Secondly, a high mutation value is applied with a small population size of 36. It is
likely that this population size is too small to allow for solutions which can

represent the different parts of the fitness landscape. (Aston et al., 2017)

A different EA will be considered to refine the GRN model.
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4.1.1 Alternative Approach

To address the problem of the GRN being overly saturated, the new approach will
only initialise 10% of the connections to be randomly connected. The mutation value
o will also be reduced for the same reason, and the population size will be increased

to allow for more solutions.

The selection process will also be modified to increase population diversity via
Tournament Selection. Tournament Selection works by choosing individuals from the

population and selecting the best individual. (Razali, Geraghty, 2011)

Finally, a crossover operator will be implemented based on (Sims, 1994), who applied
crossover to evolve rigid creatures. Introducing crossover should improve the
convergence of the EA since individuals will inherit beneficial traits from their

parents. (Hassanat, Alkafaween, 2017)

The following are the steps for the new EA:

1. Create an initial population of npep individuals by generating an empty
interaction matrix for each individual. Set 10% of the matrix connections
to a random value sampled from a uniform distribution between -1 and 1.

2. Evaluate each individual on an EvoGym task and retrieve their fitness.

3. Select the fittest % of individuals as parents.

4. Copy the fittest individual to the new population for the next generation.

5. Generate offspring by either applying crossover and mutation to 2 randomly
chosen parents OR apply mutation only to 1 randomly chosen parent (with

equal likelihood).

6. For crossover, the crossover operator presented in (Simms, 1994) is applied
to combine two parents.

7. For mutation, add Gaussian noise N(@, &) to 5% of matrix connections, and
set 1% of matrix connections to 8.

8. Repeat Steps 5 to 7 until the new population size equals npop

9. Repeat Steps 2 to 5 for each generation.

Fig.36. Pseudocode for the refined EA
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For this algorithm, npop= 100, ¢ =0.1 and Tournament Selection is applied with

tournament size = 2 for Step 5.

4.1.2 Implementation

Implementing Crossover

(Sims, 1994) proposed a crossover operator which combines two directed graphs. For
this operator, the nodes of both parents are aligned, and the parents’ nodes and
connections are copied to the child graph. Crossover points determine the point where

the child switches from inheriting nodes from the first parent to the second:

pcat 1 SEBED

X
parent 2

¥

Fig.37. Crossover operation (Sims, 1994)

Their operator has been implemented by performing single-point crossover. This code

was developed as a static method in the existing GRN class:
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Modifying the Evolutionary Algorithm

The EA class was modified to implement the new approach. Tournament selection
was implemented using Python’s random library to choose two randomly sampled

individuals from the parents. Then the parent with the highest finesses is selected:

ctin

tournament =

Fig.39. Code for implementing Tournament Selection
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4.1.3 Testing

To verify that my crossover implementation works, two GRNs were generated with
dummy data, and crossover was applied to them multiple times. Matplotlib was used

to visualise the results of each child GRN:

Parent A's GRN Parent B’s GRN

(T L00 — 100
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Fig.40. Results from the crossover test

This shows that the implemented crossover operator correctly combines elements

from both parents and selects a random crossover point.

Further Unit Tests were applied to test the newly-implemented methods: See

Appendix D.3

4.1.4 Experiments

Experiments were conducted on the refined GRN model to evaluate its effectiveness,

and the same tasks and robots were used as in Section 3.3.
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4.1.5 Preliminary Results

The results of this approach have shown quite a dramatic improvement compared with

the previous GRN:
Performance of Refined GRN (It. 1) on 'Walker-v0' task Performance of Refined GRN (It. 1) on 'Carrier-v0' task
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Fig41. Refined GRN s performance
Unlike the previous iteration, where the fitness scores plateau after a few generations,
the refined GRN’s fitness does not plateau initially. However, the fitness did plateau

in the ‘Carrier-v0’ experiment before continuing to increase again.

The ‘Carrier-v0’ and ‘UpStepper-v0’ experiments were run for 200 generations since
the fitness score continued to increase. The reason for stopping the experiment at this
time was due to the computational demands; one experiment took ~8 hrs to evaluate

on task for 200 generations.
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The ‘Walker-v0’ experiment was terminated after showing no further improvements

after half of the simulation’s runtime.

4.1.6 All Results

Ten experiment samples of the refined GRN were conducted, and each experiment
was run for a maximum of 200 generations or less if the fitness score did not improve

in the last 50% of the runtime.

Results for GRN on Fixed Robot Shapes (Refinement Iteration 1)
Produced from 10 independent samples for each task

1

Task Robot Median Best Worst IQR
Walker-v0 speed_bot 10.5735 10.5775 9.0784  0.0100
UpStepper-v0 speed_bot 1.7140 2.6511 14744  0.3354
Carrier-v0 carry_bot 6.8021 82526 52195  2.0530

"IQR = Interquartile range

Fig.42. Refined GRN results

These results show that the GRN achieved a median performance comparable to that
of the PPO on the Walker-v0 task. For the UpStepper-vO0 task, the GRN achieved a
greater median and best fitness performance than the PPO. For the Carrier-vO0 task, the
GRN achieved a lower best fitness performance than the PPO but obtained a higher

median fitness. See Appendix E.2 for full performance graphs

4.1.7 Analysis
Behaviour and Network Analysis

54



A video of the best-performing robot for each task was inspected. This was taken

from the Walker-v0 experiment:

T=0 T =100 T=200 T=300 T =400
,*1 a ﬂ
L — J i ‘
| |
Fig.43. Refined GRN's performance on ‘Walker-v0’

The video reveals that the robot runs quickly and successfully reaches the end of the
environment. The actuators contract and expand repeatedly, which results in an

effective running behaviour.

The actuator expression levels for this robot have been plotted, and this shows that

certain actuators quickly fall into a regular cyclical pattern:

[
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Fig.44. Refined GRN actuator levels for ‘Walker-v0’

The best-performing robot for the UpStepper-v0 and Carrier-v0 tasks also shows

effective actions.
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See Appendix F.2 for further behaviour and network analysis

Statistical Analysis

A Mann-Whitney U test was performed to compare the refined GRN and PPO
performance. This test produced p-values of 0.5787 for the Walker-v0 task, 0.6842 for

the Carrier-v0 task, and 0.003886 for the UpStepper-vO0 task.

The p-values for Walker-v0 and Carrier-v0 are greater than the standard 0.05
threshold; therefore, there is no statistically significant difference between the

performance of the refined GRN and PPO for these tasks.

However, the p-value for UpStepper-vO0 is less than 0.05; therefore, there is a
statistically significant difference between the groups for this task. Since the GRN’s
median performance for this task is greater than that of PPO, this test shows

statistically that the GRN performed better than PPO for the UpStepper-v0 task.

See Appendix G.2 for box plot comparison charts

4.1.8 Conclusions

The changes that were made to refine the GRN controller have resulted in robots
which show effective control in locomotion and object-manipulation tasks. The robots
performed better in every task than the previous iteration, and the statistical test

showed that the GRN performed better than the PPO for the UpStepper-v0 task.

However, when evaluated on the UpStepper-v0 and Carrier-v0 tasks, the GRN
achieved a lower fitness when compared to the PPO+GA co-design approach. This is

also the case for the PPO controller (see Chapter 3). This suggests that the robot
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designs may have prevented the GRN from achieving a higher fitness by constraining

its behaviour to a fixed morphology.

A different approach will be considered in the next iteration to co-evolve the robot’s

controller and shape using a GRN.

4.2 Refinement Iteration Two

While the previous GRN effectively controlled the robot’s movements, it performed
worse than the PPO+GA co-design approach. This suggests that the fixed hand-

designed robots are not perfectly suited for EvoGym’s tasks.

One solution could be co-optimising the robot’s controller and design using a GRN;

this approach may be able to find better robot shapes.

4.2.1 Alternative Approach

In biology, GRNs not only control cellular behaviour but they also determine how

cells develop to form complex multicellular animals. (Peter, Davidson, 2011). This
idea has been extended to virtual animats by (Joachimczak, Suzuki & Arita, 2014),
who showed that multicellular soft-bodied animats can be developed from a single

cell using a GRN and controlled on locomotion tasks.

In this section, a GRN developmental process based on this previous work will be
created and adapted for EvoGym. My strategy extends their work by evaluating

robots on locomotion and object manipulation tasks and utilising EvoGym’s
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simulator. My strategy will also implement a decentralised controller adapted from

(Medvet et al., 2020a) to allow voxels to communicate.

GRN Developmental Approach

Each robot starts as a single voxel in the centre of a 5x5 grid. This voxel contains a

GRN made of 4 input and output genes and 32 processor genes.

During the developmental process, some processor genes have special functions:

e One gene instructs the voxel to divide when its activity exceeds a pre-specified
threshold.

e Two other genes indicate the direction in which the divided cell should be placed
relative to the voxel (left, right, up, or down).

e Four genes determine the voxel’s fate, each representing the propensity for the
voxel to become each of the four possible material states. When the voxel

matures, its fate is determined by the gene with the highest activity.

The remaining processor genes serve to regulate the activity of other genes.

When a voxel divides, its GRN controller is copied into the newly-created voxel.
Additionally, voxels can communicate with their neighbours through signalling input

and output genes positioned on each side of the voxel.
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This developmental process is simulated for 100 steps. Once the robot has fully
developed, it is placed in EvoGym’s environment, and every GRN in each of the
robot’s voxels are stepped. During simulation, voxels retain their signalling genes to
allow for intercellular communication, and actuators have a single gene to control

actuation.

4.2.2 Implementation

The current program will be amended to implement the required features for this new

model.

In this approach, multiple voxels operate independently within the robot both during
and after the developmental process. To model this, a new class: RobotVoxel will be

developed, which allows one Robot to have many instances of RobotVoxel.
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This class will have attributes such as its GRN controller and a location, which will be
represented as a (row, column) tuple to store the voxel’s location within the robot.

This will allow voxels to send signals to their neighbours.

Additionally, a new attribute will be added to the Robot 